ATM90E32 Power Sensor ===================== .. seo:: :description: Instructions for setting up ATM90E32 energy metering sensors :image: atm90e32.jpg :keywords: ATM90E32, CircuitSetup, Split Single Phase Real Time Whole House Energy Meter, Expandable 6 Channel ESP32 Energy Meter Main Board The ``atm90e32`` sensor platform allows you to use your ATM90E32 voltage/current and power sensors (`datasheet `__) with ESPHome. This sensor is commonly found in CircuitSetup 2 and 6 channel energy meters. Communication with the device is done via an :ref:`SPI bus `, so you need to have an ``spi:`` entry in your configuration with both ``mosi_pin`` and ``miso_pin`` set. The ATM90E32 IC can measure up to three AC voltages although typically only one voltage measurement would be used for the mains electricity phase of a household. Three current measurements are read via CT clamps. The `CircuitSetup Split Single Phase Energy Meter `__ can read 2 current channels and 1 (expandable to 2) voltage channel. .. figure:: images/atm90e32-cs-2chan-full.jpg :align: center :width: 50.0% CircuitSetup Split Single Phase Real Time Whole House Energy Meter. The `CircuitSetup 6-Channel Energy Monitor `__ can read 6 current channels and 2 voltage channels at a time, this board has two ATM90E32 ICs and requires two sensors to be configured in ESPHome. .. figure:: images/atm90e32-cs-6chan-full.jpg :align: center :width: 50.0% CircuitSetup Expandable 6 Channel ESP32 Energy Meter Main Board. Configuration variables: ------------------------ - **cs_pin** (**Required**, :ref:`Pin Schema `): The pin CS is connected to. For the 6 channel meter main board, this will always be 5 and 4. For the add-on boards a jumper can be selected for each CS pin, but default to 0 and 16. - **line_frequency** (**Required**, string): The AC line frequency of the supply voltage. One of ``50Hz``, ``60Hz``. - **phase_a** (*Optional*): The configuration options for the 1st phase. - **voltage** (*Optional*): Use the voltage value of this phase in V (RMS). All options from :ref:`Sensor `. - **current** (*Optional*): Use the current value of this phase in amperes. All options from :ref:`Sensor `. - **power** (*Optional*): Use the power value on this phase in watts. All options from :ref:`Sensor `. - **reactive_power** (*Optional*): Use the reactive power value on this phase. All options from :ref:`Sensor `. - **power_factor** (*Optional*): Use the power factor value on this phase. All options from :ref:`Sensor `. - **gain_voltage** (*Optional*, int): Voltage gain to scale the low voltage AC power pack to household mains feed. Defaults to ``7305``. - **gain_ct** (*Optional*, int): CT clamp calibration for this phase. Defaults to ``27961``. - **forward_active_energy** (*Optional*): Use the forward active energy value on this phase in watt-hours. All options from :ref:`Sensor `. - **reverse_active_energy** (*Optional*): Use the reverse active energy value on this phase in watt-hours. All options from :ref:`Sensor `. - **phase_b** (*Optional*): The configuration options for the 2nd phase. Same options as 1st phase. - **phase_c** (*Optional*): The configuration options for the 3rd phase. Same options as 1st phase. - **frequency** (*Optional*): Use the frequenycy value calculated by the meter. All options from :ref:`Sensor `. - **chip_temperature** (*Optional*): Use the chip temperature value. All options from :ref:`Sensor `. - **gain_pga** (*Optional*, string): The gain for the CT clamp, ``2X`` for 100A, ``4X`` for 100A - 200A. One of ``1X``, ``2X``, ``4X``. Defaults to ``2X`` which is suitable for the popular SCT-013-000 clamp. - **current_phases** (*Optional*): The number of phases the meter has, ``2`` or, ``3`` The 6 Channel Expandable Energy Meter should be set to ``3``, and the Split Single Phase meter should be set to ``2``. Defaults to ``3``. - **update_interval** (*Optional*, :ref:`config-time`): The interval to check the sensor. Defaults to ``60s``. - **spi_id** (*Optional*, :ref:`config-id`): Manually specify the ID of the :ref:`SPI Component ` if you want to use multiple SPI buses. Calibration ----------- This sensor needs calibration to show correct values. The default gain configuration is set to use the `SCT-013-000 `__ current transformers, and the `Jameco Reliapro 9v AC transformer `__. A load which uses a known amount of current can be used to calibrate. For for a more accurate calibration use a `Kill-A-Watt `__ meter or similar, mains voltages can fluctuate depending on grid load. Voltage ^^^^^^^ Use the expected mains voltage for your region 110V/230V or plug in the Kill-A-Watt and select voltage. See what value the ATM90E32 sensor reports for voltage. To adjust the sensor use the calculation: ``New gain_voltage = (your voltage reading / ESPHome voltage reading) * existing gain_voltage value`` Update **gain_voltage** for all phases in your ESPHome yaml, recompile and upload. Repeat as necessary. Here are common voltage calibrations for the **Split Single Energy Meter**: For meter <= v1.3: - 42080 - 9v AC Transformer - Jameco 112336 - 32428 - 12v AC Transformer - Jameco 167151 For meter > v1.4: - 37106 - 9v AC Transformer - Jameco 157041 - 38302 - 9v AC Transformer - Jameco 112336 - 29462 - 12v AC Transformer - Jameco 167151 For Meters >= v1.4 rev.3 - 3920 - 9v AC Transformer - Jameco 157041 Here are common voltage calibrations for the **Expandable 6 Channel Energy Meter**: For meter <= v1.2: - 42080 - 9v AC Transformer - Jameco 112336 - 32428 - 12v AC Transformer - Jameco 167151 For meter > v1.3: - 7305 - 9v AC Transformer - Jameco 157041 Current ^^^^^^^ Switch on the current load and see what value the ATM90E32 sensor reports for current on the selected phase. Using the known or measured current adjust the sensor using calculation: ``New gain_ct = (your current reading / ESPHome current reading) * existing gain_ct value`` Update **gain_ct** for the phase in your ESPHome yaml, recompile and upload. Repeat as necessary. It is possible that the two identical CT current sensors will have different **gain_ct** numbers due to variances in manufacturing, although it will be small. The current calibration can be done once and used on all sensors or repeated for each one. Here are common current calibration values for the **Split Single Phase Energy Meter** when **gain_pga** is set to ``4X``: - 200A/100mA SCT-024: 12597 Here are common current calibration values for the **Split Single Phase Energy Meter** when **gain_pga** is set to ``2X``: - 20A/25mA SCT-006: 10170 - 100A/50mA SCT-013-000: 25498 - 120A/40mA SCT-016: 39473 - Magnalab 100A: 46539 Here are common current calibrations for the **Expandable 6 Channel Energy Meter** when **gain_pga** is set to ``1X``: - 20A/25mA SCT-006: 11131 - 30A/1V SCT-013-030: 8650 - 50A/1V SCT-013-050: 15420 - 80A/26.6mA SCT-010: 41996 (note this will saturate at 2^16/10^3 amps) - 100A/50ma SCT-013-000: 27961 - 120A/40mA: SCT-016: 41880 Active Energy ^^^^^^^^^^^^^ The ATM90E32 chip has a high-precision built-in ability to count the amount of consumed energy on a per-phase basis. For each phase both the Forward and Reverse active energy is counted in watt-hours. Forward Active Energy is used to count consumed energy, whereas Reverse Active Energy is used to count exported energy (e.g. with solar pv installations). The counters are reset every time a given active energy value is read from the ATM90E32 chip. Current implementation targets users who retrieve the energy values with a regular interval and store them in a time-series-database, e.g. InfluxDB. **Example:** .. code-block:: yaml sensor: #IC1 Main - platform: atm90e32 cs_pin: 5 phase_a: forward_active_energy: name: ${disp_name} ct1 FAWattHours id: ct1FAWattHours state_topic: ${disp_name}/ct1/forward_active_energy reverse_active_energy: name: ${disp_name} ct1 RAWattHours id: ct1RAWattHours state_topic: ${disp_name}/ct1/reverse_active_energy If the power, power_factor, reactive_power, forward_active_energy, or reverse_active_energy configuraion variables are used, care must be taken to ensure that the line ATM90E32's voltage is from is the same phase as the current transformer is installed on. This is significant in split-phase or multi phase installations. On a house with 240 split-phase wiring (very common in the US), one simple test is to reverse the orentation of the current transformer on a line. If the power factor doesn't change sign, it is likely that the voltage fed to the ATM90E32 is from the other phase. The CircuitSetup Expandable 6 channel board can easilly handle this situation by cutting the jumpers JP12/13 to allow a seperate VA2 to be input on the J3 pads. Make sure that current taps connected to CT 1-3 are on the phase from which VA is fed (the barrel jack) and the taps connected to CT3-6 are on the phase from which VA2 is fed. See the CicuitSetup repo for more details on this. If a mulit board stack is being used, remember to cut JP12/13 on all boards and to feed VA2 to each board. VA is fed to all boards through the stacking headers. Another detail is that each voltage transformer needs to have the same polarity; getting this backwards will be just like having it on the wrong phase. Note that the current measurement is the RMS value so is always positive. They only way to determine directon is to look at the power factor. If there are only largly resistive loads and no power sources, (PF almost 1), it is simpler to just create a template sensor that computes power from Irms*Vrms and ignore all these details. On the other hand, one might be surprised how reactive some loads are and the CirciuitSetup designs are able to handle these situations well. Additional Examples ------------------- .. code-block:: yaml # Example configuration entry for split single phase meter spi: clk_pin: 18 miso_pin: 19 mosi_pin: 23 sensor: - platform: atm90e32 cs_pin: 5 phase_a: voltage: name: "EMON Line Voltage A" current: name: "EMON CT1 Current" power: name: "EMON Active Power CT1" reactive_power: name: "EMON Reactive Power CT1" power_factor: name: "EMON Power Factor CT1" gain_voltage: 3920 gain_ct: 39473 phase_c: current: name: "EMON CT2 Current" power: name: "EMON Active Power CT2" reactive_power: name: "EMON Reactive Power CT2" power_factor: name: "EMON Power Factor CT2" gain_voltage: 3920 gain_ct: 39473 frequency: name: "EMON Line Frequency" chip_temperature: name: "EMON Chip Temperature" line_frequency: 50Hz current_phases: 2 gain_pga: 2X update_interval: 60s .. code-block:: yaml # Example CircuitSetup 6-channel entry spi: clk_pin: 18 miso_pin: 19 mosi_pin: 23 sensor: - platform: atm90e32 cs_pin: 5 phase_a: voltage: name: "EMON Line Voltage A" current: name: "EMON CT1 Current" power: name: "EMON Active Power CT1" gain_voltage: 7305 gain_ct: 12577 phase_b: current: name: "EMON CT2 Current" power: name: "EMON Active Power CT2" gain_voltage: 7305 gain_ct: 12577 phase_c: current: name: "EMON CT3 Current" power: name: "EMON Active Power CT3" gain_voltage: 7305 gain_ct: 12577 frequency: name: "EMON Line Frequency" line_frequency: 50Hz current_phases: 3 gain_pga: 1X update_interval: 60s - platform: atm90e32 cs_pin: 4 phase_a: current: name: "EMON CT4 Current" power: name: "EMON Active Power CT4" gain_voltage: 7305 gain_ct: 12577 phase_b: current: name: "EMON CT5 Current" power: name: "EMON Active Power CT5" gain_voltage: 7305 gain_ct: 12577 phase_c: current: name: "EMON CT6 Current" power: name: "EMON Active Power CT6" gain_voltage: 7305 gain_ct: 12577 line_frequency: 50Hz current_phases: 3 gain_pga: 1X update_interval: 60s .. code-block:: yaml # Example CircuitSetup 6-channel without jumpers jp9-jp11 joined or < meter v1.4 # power is calculated in a template substitutions: disp_name: 6C update_time: 10s current_cal: '27961' spi: clk_pin: 18 miso_pin: 19 mosi_pin: 23 sensor: - platform: atm90e32 cs_pin: 5 phase_a: voltage: name: ${disp_name} Volts A id: ic1Volts accuracy_decimals: 1 current: name: ${disp_name} CT1 Amps id: ct1Amps gain_voltage: 7305 gain_ct: ${current_cal} phase_b: current: name: ${disp_name} CT2 Amps id: ct2Amps gain_ct: ${current_cal} phase_c: current: name: ${disp_name} CT3 Amps id: ct3Amps gain_ct: ${current_cal} frequency: name: ${disp_name} Freq A line_frequency: 60Hz current_phases: 3 gain_pga: 1X update_interval: ${update_time} - platform: atm90e32 cs_pin: 4 phase_a: voltage: name: ${disp_name} Volts B id: ic2Volts accuracy_decimals: 1 current: name: ${disp_name} CT4 Amps id: ct4Amps gain_voltage: 7305 gain_ct: ${current_cal} phase_b: current: name: ${disp_name} CT5 Amps id: ct5Amps gain_ct: ${current_cal} phase_c: current: name: ${disp_name} CT6 Amps id: ct6Amps gain_ct: ${current_cal} frequency: name: ${disp_name} Freq B line_frequency: 60Hz current_phases: 3 gain_pga: 1X update_interval: ${update_time} #Watts per channel - platform: template name: ${disp_name} CT1 Watts id: ct1Watts lambda: return id(ct1Amps).state * id(ic1Volts).state; accuracy_decimals: 0 unit_of_measurement: W icon: "mdi:flash-circle" update_interval: ${update_time} - platform: template name: ${disp_name} CT2 Watts id: ct2Watts lambda: return id(ct2Amps).state * id(ic1Volts).state; accuracy_decimals: 0 unit_of_measurement: W icon: "mdi:flash-circle" update_interval: ${update_time} - platform: template name: ${disp_name} CT3 Watts id: ct3Watts lambda: return id(ct3Amps).state * id(ic1Volts).state; accuracy_decimals: 0 unit_of_measurement: W icon: "mdi:flash-circle" update_interval: ${update_time} - platform: template name: ${disp_name} CT4 Watts id: ct4Watts lambda: return id(ct4Amps).state * id(ic2Volts).state; accuracy_decimals: 0 unit_of_measurement: W icon: "mdi:flash-circle" update_interval: ${update_time} - platform: template name: ${disp_name} CT5 Watts id: ct5Watts lambda: return id(ct5Amps).state * id(ic2Volts).state; accuracy_decimals: 0 unit_of_measurement: W icon: "mdi:flash-circle" update_interval: ${update_time} - platform: template name: ${disp_name} CT6 Watts id: ct6Watts lambda: return id(ct6Amps).state * id(ic2Volts).state; accuracy_decimals: 0 unit_of_measurement: W icon: "mdi:flash-circle" update_interval: ${update_time} #Total Amps - platform: template name: ${disp_name} Total Amps id: totalAmps lambda: return id(ct1Amps).state + id(ct2Amps).state + id(ct3Amps).state + id(ct4Amps).state + id(ct5Amps).state + id(ct6Amps).state ; accuracy_decimals: 2 unit_of_measurement: A icon: "mdi:flash" update_interval: ${update_time} #Total Watts - platform: template name: ${disp_name} Total Watts id: totalWatts lambda: return id(totalAmps).state * id(ic1Volts).state; accuracy_decimals: 1 unit_of_measurement: W icon: "mdi:flash-circle" update_interval: ${update_time} #kWh - platform: total_daily_energy name: ${disp_name} Total kWh power_id: totalWatts filters: - multiply: 0.001 unit_of_measurement: kWh See Also -------- - :ref:`sensor-filters` - :apiref:`atm90e32/atm90e32.h` - :ghedit:`Edit`