esphome-docs/guides/getting_started_command_line.rst
Steamfoundry 18feec5037
Update getting_started_command_line.rst (#2561)
Added the --privileged docker flag
2023-02-05 20:39:11 +01:00

236 lines
8.6 KiB
ReStructuredText
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Getting Started with the ESPHome Command Line
=============================================
.. seo::
:description: Getting Started guide for installing ESPHome using the command line and creating a basic configuration.
:image: console.svg
ESPHome is the perfect solution for creating custom firmwares for
your ESP8266/ESP32 boards. In this guide well go through how to set up a
basic “node” in a few simple steps.
Installation
------------
See :doc:`installing_esphome`.
If you're familiar with Docker, you can use that instead!
Note that on macOS Docker `can not pass USB devices through <https://github.com/moby/hyperkit/issues/149>`__.
You will not be able to flash ESP devices through USB on Mac, all other features will work. Flashing with web dashboard is still possible.
Our image supports AMD64, ARM and ARM64 (AARCH64), and can be downloaded with:
.. code-block:: bash
docker pull esphome/esphome
If you want to use `docker-compose` instead, here's a sample file:
.. code-block:: yaml
version: '3'
services:
esphome:
container_name: esphome
image: esphome/esphome
volumes:
- /path/to/esphome/config:/config
- /etc/localtime:/etc/localtime:ro
restart: always
privileged: true
network_mode: host
The project provides multiple docker tags; please pick the one that suits you
better:
- ``latest`` and ``stable`` point to the latest stable release available. It's
not recommended to automatically update the container based on those tags
because of the possible breaking changes between releases.
- Release-tracking tag ``YEAR.MONTH`` (e.g. ``2022.8``) points to the latest
stable patch release available within the required version. There should
never be a breaking change when upgrading the containers based on tags like
that.
- ``beta`` points to the latest released beta version, and to the latest stable
release when there is no fresh beta release.
- ``dev`` is the bleeding edge release; built daily based on the latest changes
in the ``dev`` branch.
Connecting the ESP Device
-------------------------
Follow the instructions in :doc:`physical_device_connection` to connect to your
ESP device.
.. note::
The most difficult part of setting up a new ESPHome device is the initial
installation. Installation requires that your ESP device is connected with
a cable to a computer. Later updates can be installed wirelessly.
Creating a Project
------------------
Now lets setup a configuration file. Fortunately, ESPHome has a
friendly setup wizard that will guide you through creating your first
configuration file. For example, if you want to create a configuration
file called ``livingroom.yaml``:
.. code-block:: bash
esphome wizard livingroom.yaml
# On Docker:
docker run --rm -v "${PWD}":/config -it esphome/esphome wizard livingroom.yaml
At the end of this step, you will have your first YAML configuration
file ready. It doesn't do much yet and only makes your device connect to
the WiFi network, but still its a first step.
Adding some features
--------------------
So now you should have a file called ``livingroom.yaml`` (or similar).
Go open that file in an editor of your choice and lets add a :doc:`simple
GPIO switch </components/switch/gpio>` to our app.
.. code-block:: yaml
switch:
- platform: gpio
name: "Living Room Dehumidifier"
pin: 5
The configuration format should hopefully immediately seem similar to
you. ESPHome has tried to keep it as close to Home Assistants
``configuration.yaml`` schema as possible. In the above example, were
simply adding a switch thats called “Living Room Dehumidifier” (could control
anything really, for example lights) and is connected to pin ``GPIO5``.
The nice thing about ESPHome is that it will automatically also try
to translate pin numbers for you based on the board. For example in the
above configuration, if using a NodeMCU board, you could have just as
well set ``D1`` as the ``pin:`` option.
First uploading
---------------
Now you can go ahead and add some more components. Once you feel like
you have something you want to upload to your ESP board, simply plug in
the device via USB and type the following command (replacing
``livingroom.yaml`` with your configuration file):
.. code-block:: bash
esphome run livingroom.yaml
You should see ESPHome validating the configuration and telling you
about potential problems. Then ESPHome will proceed to compile and
upload the custom firmware. You will also see that ESPHome created a
new folder with the name of your node. This is a new PlatformIO project
that you can modify afterwards and play around with.
If you are running docker on Linux you can add ``--device=/dev/ttyUSB0``
to your docker command to map a local USB device. Docker on Mac will not be able to access host USB devices.
.. code-block:: bash
docker run --rm --privileged -v "${PWD}":/config --device=/dev/ttyUSB0 -it esphome/esphome run livingroom.yaml
Now when you go to the Home Assistant "Integrations" screen (under "Configuration" panel), you
should see the ESPHome device show up in the discovered section (although this can take up to 5 minutes).
Alternatively, you can manually add the device by clicking "CONFIGURE" on the ESPHome integration
and entering "<NODE_NAME>.local" as the host.
.. figure:: /components/switch/images/gpio-ui.png
:align: center
After the first upload, you will probably never need to use the USB
cable again, as all features of ESPHome are enabled remotely as well.
No more opening hidden boxes stowed in places hard to reach. Yay!
Adding A Binary Sensor
----------------------
Next, were going to add a very simple binary sensor that periodically
checks if a particular GPIO pin is pulled high or low - the :doc:`GPIO Binary
Sensor </components/binary_sensor/gpio>`.
.. code-block:: yaml
binary_sensor:
- platform: gpio
name: "Living Room Window"
pin:
number: 16
inverted: true
mode:
input: true
pullup: true
This is an advanced feature of ESPHome. Almost all pins can
optionally have a more complicated configuration schema with options for
inversion and pinMode - the :ref:`Pin Schema <config-pin_schema>`.
This time when uploading, you dont need to have the device plugged in
through USB again. The upload will magically happen “over the air”.
Using ESPHome directly, this is the same as from a USB cable, but
for docker you need to supply an additional parameter:
.. code-block:: bash
esphome livingroom.yaml run
# On docker
docker run --rm -v "${PWD}":/config -it esphome/esphome run livingroom.yaml
.. figure:: /components/binary_sensor/images/gpio-ui.png
Where To Go Next
----------------
Great 🎉! Youve now successfully set up your first ESPHome project
and uploaded your first ESPHome custom firmware to your node. Youve
also learned how to enable some basic components via the configuration
file.
So now is a great time to go take a look at the :doc:`Components Index </index>`.
Hopefully youll find all sensors/outputs/etc. youll need in there. If youre having any problems or
want new features, please either create a new issue on the `GitHub issue
tracker <https://github.com/esphome/issues/issues>`__ or find us on the
`Discord chat <https://discord.gg/KhAMKrd>`__ (also make sure to read the :doc:`FAQ <faq>`).
Bonus: ESPHome dashboard
------------------------
ESPHome features a dashboard that you can use to easily manage your nodes
from a nice web interface. It was primarily designed for
:doc:`the Home Assistant add-on <getting_started_hassio>`, but also works with a simple command on
\*nix machines (sorry, no windows).
To start the ESPHome dashboard, simply start ESPHome with the following command
(with ``config/`` pointing to a directory where you want to store your configurations)
.. code-block:: bash
# Install dashboard dependencies
pip install tornado esptool
esphome dashboard config/
# On Docker, host networking mode is required for online status indicators
docker run --rm --net=host -v "${PWD}":/config -it esphome/esphome
# On Docker with MacOS, the host networking option doesn't work as expected. An
# alternative is to use the following command if you are a MacOS user.
docker run --rm -p 6052:6052 -e ESPHOME_DASHBOARD_USE_PING=true -v "${PWD}":/config -it esphome/esphome
After that, you will be able to access the dashboard through ``localhost:6052``.
.. figure:: images/dashboard_states.png
See Also
--------
- :doc:`cli`
- :doc:`ESPHome index </index>`
- :doc:`getting_started_hassio`
- :ghedit:`Edit`