Add support for PN7150 (#5487)

Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
This commit is contained in:
Keith Burzinski 2023-12-13 17:27:35 -06:00 committed by GitHub
parent 6fd239362d
commit 76a6e288b6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 2345 additions and 0 deletions

View File

@ -240,6 +240,8 @@ esphome/components/pmwcs3/* @SeByDocKy
esphome/components/pn532/* @OttoWinter @jesserockz esphome/components/pn532/* @OttoWinter @jesserockz
esphome/components/pn532_i2c/* @OttoWinter @jesserockz esphome/components/pn532_i2c/* @OttoWinter @jesserockz
esphome/components/pn532_spi/* @OttoWinter @jesserockz esphome/components/pn532_spi/* @OttoWinter @jesserockz
esphome/components/pn7150/* @jesserockz @kbx81
esphome/components/pn7150_i2c/* @jesserockz @kbx81
esphome/components/pn7160/* @jesserockz @kbx81 esphome/components/pn7160/* @jesserockz @kbx81
esphome/components/pn7160_i2c/* @jesserockz @kbx81 esphome/components/pn7160_i2c/* @jesserockz @kbx81
esphome/components/pn7160_spi/* @jesserockz @kbx81 esphome/components/pn7160_spi/* @jesserockz @kbx81

View File

@ -0,0 +1,215 @@
from esphome import automation, pins
from esphome.automation import maybe_simple_id
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import nfc
from esphome.const import (
CONF_ID,
CONF_IRQ_PIN,
CONF_ON_TAG_REMOVED,
CONF_ON_TAG,
CONF_TRIGGER_ID,
)
AUTO_LOAD = ["binary_sensor", "nfc"]
CODEOWNERS = ["@kbx81", "@jesserockz"]
CONF_EMULATION_MESSAGE = "emulation_message"
CONF_EMULATION_OFF = "emulation_off"
CONF_EMULATION_ON = "emulation_on"
CONF_INCLUDE_ANDROID_APP_RECORD = "include_android_app_record"
CONF_MESSAGE = "message"
CONF_ON_FINISHED_WRITE = "on_finished_write"
CONF_ON_EMULATED_TAG_SCAN = "on_emulated_tag_scan"
CONF_PN7150_ID = "pn7150_id"
CONF_POLLING_OFF = "polling_off"
CONF_POLLING_ON = "polling_on"
CONF_SET_CLEAN_MODE = "set_clean_mode"
CONF_SET_EMULATION_MESSAGE = "set_emulation_message"
CONF_SET_FORMAT_MODE = "set_format_mode"
CONF_SET_READ_MODE = "set_read_mode"
CONF_SET_WRITE_MESSAGE = "set_write_message"
CONF_SET_WRITE_MODE = "set_write_mode"
CONF_TAG_TTL = "tag_ttl"
CONF_VEN_PIN = "ven_pin"
pn7150_ns = cg.esphome_ns.namespace("pn7150")
PN7150 = pn7150_ns.class_("PN7150", cg.Component)
EmulationOffAction = pn7150_ns.class_("EmulationOffAction", automation.Action)
EmulationOnAction = pn7150_ns.class_("EmulationOnAction", automation.Action)
PollingOffAction = pn7150_ns.class_("PollingOffAction", automation.Action)
PollingOnAction = pn7150_ns.class_("PollingOnAction", automation.Action)
SetCleanModeAction = pn7150_ns.class_("SetCleanModeAction", automation.Action)
SetEmulationMessageAction = pn7150_ns.class_(
"SetEmulationMessageAction", automation.Action
)
SetFormatModeAction = pn7150_ns.class_("SetFormatModeAction", automation.Action)
SetReadModeAction = pn7150_ns.class_("SetReadModeAction", automation.Action)
SetWriteMessageAction = pn7150_ns.class_("SetWriteMessageAction", automation.Action)
SetWriteModeAction = pn7150_ns.class_("SetWriteModeAction", automation.Action)
PN7150OnEmulatedTagScanTrigger = pn7150_ns.class_(
"PN7150OnEmulatedTagScanTrigger", automation.Trigger.template()
)
PN7150OnFinishedWriteTrigger = pn7150_ns.class_(
"PN7150OnFinishedWriteTrigger", automation.Trigger.template()
)
PN7150IsWritingCondition = pn7150_ns.class_(
"PN7150IsWritingCondition", automation.Condition
)
IsWritingCondition = nfc.nfc_ns.class_("IsWritingCondition", automation.Condition)
SIMPLE_ACTION_SCHEMA = maybe_simple_id(
{
cv.Required(CONF_ID): cv.use_id(PN7150),
}
)
SET_MESSAGE_ACTION_SCHEMA = cv.Schema(
{
cv.GenerateID(): cv.use_id(PN7150),
cv.Required(CONF_MESSAGE): cv.templatable(cv.string),
cv.Optional(CONF_INCLUDE_ANDROID_APP_RECORD, default=True): cv.boolean,
}
)
PN7150_SCHEMA = cv.Schema(
{
cv.GenerateID(): cv.declare_id(PN7150),
cv.Optional(CONF_ON_EMULATED_TAG_SCAN): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(
PN7150OnEmulatedTagScanTrigger
),
}
),
cv.Optional(CONF_ON_FINISHED_WRITE): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(
PN7150OnFinishedWriteTrigger
),
}
),
cv.Optional(CONF_ON_TAG): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(nfc.NfcOnTagTrigger),
}
),
cv.Optional(CONF_ON_TAG_REMOVED): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(nfc.NfcOnTagTrigger),
}
),
cv.Required(CONF_IRQ_PIN): pins.gpio_input_pin_schema,
cv.Required(CONF_VEN_PIN): pins.gpio_output_pin_schema,
cv.Optional(CONF_EMULATION_MESSAGE): cv.string,
cv.Optional(CONF_TAG_TTL): cv.positive_time_period_milliseconds,
}
).extend(cv.COMPONENT_SCHEMA)
@automation.register_action(
"tag.set_emulation_message",
SetEmulationMessageAction,
SET_MESSAGE_ACTION_SCHEMA,
)
@automation.register_action(
"tag.set_write_message",
SetWriteMessageAction,
SET_MESSAGE_ACTION_SCHEMA,
)
async def pn7150_set_message_to_code(config, action_id, template_arg, args):
var = cg.new_Pvariable(action_id, template_arg)
await cg.register_parented(var, config[CONF_ID])
template_ = await cg.templatable(config[CONF_MESSAGE], args, cg.std_string)
cg.add(var.set_message(template_))
template_ = await cg.templatable(
config[CONF_INCLUDE_ANDROID_APP_RECORD], args, cg.bool_
)
cg.add(var.set_include_android_app_record(template_))
return var
@automation.register_action(
"tag.emulation_off", EmulationOffAction, SIMPLE_ACTION_SCHEMA
)
@automation.register_action("tag.emulation_on", EmulationOnAction, SIMPLE_ACTION_SCHEMA)
@automation.register_action("tag.polling_off", PollingOffAction, SIMPLE_ACTION_SCHEMA)
@automation.register_action("tag.polling_on", PollingOnAction, SIMPLE_ACTION_SCHEMA)
@automation.register_action(
"tag.set_clean_mode", SetCleanModeAction, SIMPLE_ACTION_SCHEMA
)
@automation.register_action(
"tag.set_format_mode", SetFormatModeAction, SIMPLE_ACTION_SCHEMA
)
@automation.register_action(
"tag.set_read_mode", SetReadModeAction, SIMPLE_ACTION_SCHEMA
)
@automation.register_action(
"tag.set_write_mode", SetWriteModeAction, SIMPLE_ACTION_SCHEMA
)
async def pn7150_simple_action_to_code(config, action_id, template_arg, args):
var = cg.new_Pvariable(action_id, template_arg)
await cg.register_parented(var, config[CONF_ID])
return var
async def setup_pn7150(var, config):
await cg.register_component(var, config)
pin = await cg.gpio_pin_expression(config[CONF_IRQ_PIN])
cg.add(var.set_irq_pin(pin))
pin = await cg.gpio_pin_expression(config[CONF_VEN_PIN])
cg.add(var.set_ven_pin(pin))
if emulation_message_config := config.get(CONF_EMULATION_MESSAGE):
cg.add(var.set_tag_emulation_message(emulation_message_config))
cg.add(var.set_tag_emulation_on())
if CONF_TAG_TTL in config:
cg.add(var.set_tag_ttl(config[CONF_TAG_TTL]))
for conf in config.get(CONF_ON_TAG, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID])
cg.add(var.register_ontag_trigger(trigger))
await automation.build_automation(
trigger, [(cg.std_string, "x"), (nfc.NfcTag, "tag")], conf
)
for conf in config.get(CONF_ON_TAG_REMOVED, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID])
cg.add(var.register_ontagremoved_trigger(trigger))
await automation.build_automation(
trigger, [(cg.std_string, "x"), (nfc.NfcTag, "tag")], conf
)
for conf in config.get(CONF_ON_EMULATED_TAG_SCAN, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await automation.build_automation(trigger, [], conf)
for conf in config.get(CONF_ON_FINISHED_WRITE, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await automation.build_automation(trigger, [], conf)
@automation.register_condition(
"pn7150.is_writing",
PN7150IsWritingCondition,
cv.Schema(
{
cv.GenerateID(): cv.use_id(PN7150),
}
),
)
async def pn7150_is_writing_to_code(config, condition_id, template_arg, args):
var = cg.new_Pvariable(condition_id, template_arg)
await cg.register_parented(var, config[CONF_ID])
return var

View File

@ -0,0 +1,82 @@
#pragma once
#include "esphome/core/automation.h"
#include "esphome/core/component.h"
#include "esphome/components/pn7150/pn7150.h"
namespace esphome {
namespace pn7150 {
class PN7150OnEmulatedTagScanTrigger : public Trigger<> {
public:
explicit PN7150OnEmulatedTagScanTrigger(PN7150 *parent) {
parent->add_on_emulated_tag_scan_callback([this]() { this->trigger(); });
}
};
class PN7150OnFinishedWriteTrigger : public Trigger<> {
public:
explicit PN7150OnFinishedWriteTrigger(PN7150 *parent) {
parent->add_on_finished_write_callback([this]() { this->trigger(); });
}
};
template<typename... Ts> class PN7150IsWritingCondition : public Condition<Ts...>, public Parented<PN7150> {
public:
bool check(Ts... x) override { return this->parent_->is_writing(); }
};
template<typename... Ts> class EmulationOffAction : public Action<Ts...>, public Parented<PN7150> {
void play(Ts... x) override { this->parent_->set_tag_emulation_off(); }
};
template<typename... Ts> class EmulationOnAction : public Action<Ts...>, public Parented<PN7150> {
void play(Ts... x) override { this->parent_->set_tag_emulation_on(); }
};
template<typename... Ts> class PollingOffAction : public Action<Ts...>, public Parented<PN7150> {
void play(Ts... x) override { this->parent_->set_polling_off(); }
};
template<typename... Ts> class PollingOnAction : public Action<Ts...>, public Parented<PN7150> {
void play(Ts... x) override { this->parent_->set_polling_on(); }
};
template<typename... Ts> class SetCleanModeAction : public Action<Ts...>, public Parented<PN7150> {
void play(Ts... x) override { this->parent_->clean_mode(); }
};
template<typename... Ts> class SetFormatModeAction : public Action<Ts...>, public Parented<PN7150> {
void play(Ts... x) override { this->parent_->format_mode(); }
};
template<typename... Ts> class SetReadModeAction : public Action<Ts...>, public Parented<PN7150> {
void play(Ts... x) override { this->parent_->read_mode(); }
};
template<typename... Ts> class SetEmulationMessageAction : public Action<Ts...>, public Parented<PN7150> {
TEMPLATABLE_VALUE(std::string, message)
TEMPLATABLE_VALUE(bool, include_android_app_record)
void play(Ts... x) override {
this->parent_->set_tag_emulation_message(this->message_.optional_value(x...),
this->include_android_app_record_.optional_value(x...));
}
};
template<typename... Ts> class SetWriteMessageAction : public Action<Ts...>, public Parented<PN7150> {
TEMPLATABLE_VALUE(std::string, message)
TEMPLATABLE_VALUE(bool, include_android_app_record)
void play(Ts... x) override {
this->parent_->set_tag_write_message(this->message_.optional_value(x...),
this->include_android_app_record_.optional_value(x...));
}
};
template<typename... Ts> class SetWriteModeAction : public Action<Ts...>, public Parented<PN7150> {
void play(Ts... x) override { this->parent_->write_mode(); }
};
} // namespace pn7150
} // namespace esphome

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,296 @@
#pragma once
#include "esphome/components/nfc/automation.h"
#include "esphome/components/nfc/nci_core.h"
#include "esphome/components/nfc/nci_message.h"
#include "esphome/components/nfc/nfc.h"
#include "esphome/components/nfc/nfc_helpers.h"
#include "esphome/core/component.h"
#include "esphome/core/gpio.h"
#include "esphome/core/helpers.h"
#include <functional>
namespace esphome {
namespace pn7150 {
static const uint16_t NFCC_DEFAULT_TIMEOUT = 10;
static const uint16_t NFCC_INIT_TIMEOUT = 50;
static const uint16_t NFCC_TAG_WRITE_TIMEOUT = 15;
static const uint8_t NFCC_MAX_COMM_FAILS = 3;
static const uint8_t NFCC_MAX_ERROR_COUNT = 10;
static const uint8_t XCHG_DATA_OID = 0x10;
static const uint8_t MF_SECTORSEL_OID = 0x32;
static const uint8_t MFC_AUTHENTICATE_OID = 0x40;
static const uint8_t TEST_PRBS_OID = 0x30;
static const uint8_t TEST_ANTENNA_OID = 0x3D;
static const uint8_t TEST_GET_REGISTER_OID = 0x33;
static const uint8_t MFC_AUTHENTICATE_PARAM_KS_A = 0x00; // key select A
static const uint8_t MFC_AUTHENTICATE_PARAM_KS_B = 0x80; // key select B
static const uint8_t MFC_AUTHENTICATE_PARAM_EMBED_KEY = 0x10;
static const uint8_t CARD_EMU_T4T_APP_SELECT[] = {0x00, 0xA4, 0x04, 0x00, 0x07, 0xD2, 0x76,
0x00, 0x00, 0x85, 0x01, 0x01, 0x00};
static const uint8_t CARD_EMU_T4T_CC[] = {0x00, 0x0F, 0x20, 0x00, 0xFF, 0x00, 0xFF, 0x04,
0x06, 0xE1, 0x04, 0x00, 0xFF, 0x00, 0x00};
static const uint8_t CARD_EMU_T4T_CC_SELECT[] = {0x00, 0xA4, 0x00, 0x0C, 0x02, 0xE1, 0x03};
static const uint8_t CARD_EMU_T4T_NDEF_SELECT[] = {0x00, 0xA4, 0x00, 0x0C, 0x02, 0xE1, 0x04};
static const uint8_t CARD_EMU_T4T_READ[] = {0x00, 0xB0};
static const uint8_t CARD_EMU_T4T_WRITE[] = {0x00, 0xD6};
static const uint8_t CARD_EMU_T4T_OK[] = {0x90, 0x00};
static const uint8_t CARD_EMU_T4T_NOK[] = {0x6A, 0x82};
static const uint8_t CORE_CONFIG_SOLO[] = {0x01, // Number of parameter fields
0x00, // config param identifier (TOTAL_DURATION)
0x02, // length of value
0x01, // TOTAL_DURATION (low)...
0x00}; // TOTAL_DURATION (high): 1 ms
static const uint8_t CORE_CONFIG_RW_CE[] = {0x01, // Number of parameter fields
0x00, // config param identifier (TOTAL_DURATION)
0x02, // length of value
0xF8, // TOTAL_DURATION (low)...
0x02}; // TOTAL_DURATION (high): 760 ms
static const uint8_t PMU_CFG[] = {
0x01, // Number of parameters
0xA0, 0x0E, // ext. tag
3, // length
0x06, // VBAT1 connected to 5V (CFG2)
0x64, // TVDD monitoring threshold = 5.0V; TxLDO voltage = 4.7V (in reader & card modes)
0x01, // RFU; must be 0x00 for CFG1 and 0x01 for CFG2
};
static const uint8_t RF_DISCOVER_MAP_CONFIG[] = { // poll modes
nfc::PROT_T1T, nfc::RF_DISCOVER_MAP_MODE_POLL,
nfc::INTF_FRAME, // poll mode
nfc::PROT_T2T, nfc::RF_DISCOVER_MAP_MODE_POLL,
nfc::INTF_FRAME, // poll mode
nfc::PROT_T3T, nfc::RF_DISCOVER_MAP_MODE_POLL,
nfc::INTF_FRAME, // poll mode
nfc::PROT_ISODEP, nfc::RF_DISCOVER_MAP_MODE_POLL | nfc::RF_DISCOVER_MAP_MODE_LISTEN,
nfc::INTF_ISODEP, // poll & listen mode
nfc::PROT_MIFARE, nfc::RF_DISCOVER_MAP_MODE_POLL,
nfc::INTF_TAGCMD}; // poll mode
static const uint8_t RF_DISCOVERY_LISTEN_CONFIG[] = {nfc::MODE_LISTEN_MASK | nfc::TECH_PASSIVE_NFCA, // listen mode
nfc::MODE_LISTEN_MASK | nfc::TECH_PASSIVE_NFCB, // listen mode
nfc::MODE_LISTEN_MASK | nfc::TECH_PASSIVE_NFCF}; // listen mode
static const uint8_t RF_DISCOVERY_POLL_CONFIG[] = {nfc::MODE_POLL | nfc::TECH_PASSIVE_NFCA, // poll mode
nfc::MODE_POLL | nfc::TECH_PASSIVE_NFCB, // poll mode
nfc::MODE_POLL | nfc::TECH_PASSIVE_NFCF}; // poll mode
static const uint8_t RF_DISCOVERY_CONFIG[] = {nfc::MODE_POLL | nfc::TECH_PASSIVE_NFCA, // poll mode
nfc::MODE_POLL | nfc::TECH_PASSIVE_NFCB, // poll mode
nfc::MODE_POLL | nfc::TECH_PASSIVE_NFCF, // poll mode
nfc::MODE_LISTEN_MASK | nfc::TECH_PASSIVE_NFCA, // listen mode
nfc::MODE_LISTEN_MASK | nfc::TECH_PASSIVE_NFCB, // listen mode
nfc::MODE_LISTEN_MASK | nfc::TECH_PASSIVE_NFCF}; // listen mode
static const uint8_t RF_LISTEN_MODE_ROUTING_CONFIG[] = {0x00, // "more" (another message is coming)
1, // number of table entries
0x01, // type = protocol-based
3, // length
0, // DH NFCEE ID, a static ID representing the DH-NFCEE
0x01, // power state
nfc::PROT_ISODEP}; // protocol
enum class CardEmulationState : uint8_t {
CARD_EMU_IDLE,
CARD_EMU_NDEF_APP_SELECTED,
CARD_EMU_CC_SELECTED,
CARD_EMU_NDEF_SELECTED,
CARD_EMU_DESFIRE_PROD,
};
enum class NCIState : uint8_t {
NONE = 0x00,
NFCC_RESET,
NFCC_INIT,
NFCC_CONFIG,
NFCC_SET_DISCOVER_MAP,
NFCC_SET_LISTEN_MODE_ROUTING,
RFST_IDLE,
RFST_DISCOVERY,
RFST_W4_ALL_DISCOVERIES,
RFST_W4_HOST_SELECT,
RFST_LISTEN_ACTIVE,
RFST_LISTEN_SLEEP,
RFST_POLL_ACTIVE,
EP_DEACTIVATING,
EP_SELECTING,
TEST = 0XFE,
FAILED = 0XFF,
};
enum class TestMode : uint8_t {
TEST_NONE = 0x00,
TEST_PRBS,
TEST_ANTENNA,
TEST_GET_REGISTER,
};
struct DiscoveredEndpoint {
uint8_t id;
uint8_t protocol;
uint32_t last_seen;
std::unique_ptr<nfc::NfcTag> tag;
bool trig_called;
};
class PN7150 : public Component {
public:
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void loop() override;
void set_irq_pin(GPIOPin *irq_pin) { this->irq_pin_ = irq_pin; }
void set_ven_pin(GPIOPin *ven_pin) { this->ven_pin_ = ven_pin; }
void set_tag_ttl(uint32_t ttl) { this->tag_ttl_ = ttl; }
void set_tag_emulation_message(std::shared_ptr<nfc::NdefMessage> message);
void set_tag_emulation_message(const optional<std::string> &message, optional<bool> include_android_app_record);
void set_tag_emulation_message(const char *message, bool include_android_app_record = true);
void set_tag_emulation_off();
void set_tag_emulation_on();
bool tag_emulation_enabled() { return this->listening_enabled_; }
void set_polling_off();
void set_polling_on();
bool polling_enabled() { return this->polling_enabled_; }
void register_ontag_trigger(nfc::NfcOnTagTrigger *trig) { this->triggers_ontag_.push_back(trig); }
void register_ontagremoved_trigger(nfc::NfcOnTagTrigger *trig) { this->triggers_ontagremoved_.push_back(trig); }
void add_on_emulated_tag_scan_callback(std::function<void()> callback) {
this->on_emulated_tag_scan_callback_.add(std::move(callback));
}
void add_on_finished_write_callback(std::function<void()> callback) {
this->on_finished_write_callback_.add(std::move(callback));
}
bool is_writing() { return this->next_task_ != EP_READ; };
void read_mode();
void clean_mode();
void format_mode();
void write_mode();
void set_tag_write_message(std::shared_ptr<nfc::NdefMessage> message);
void set_tag_write_message(optional<std::string> message, optional<bool> include_android_app_record);
uint8_t set_test_mode(TestMode test_mode, const std::vector<uint8_t> &data, std::vector<uint8_t> &result);
protected:
uint8_t reset_core_(bool reset_config, bool power);
uint8_t init_core_();
uint8_t send_init_config_();
uint8_t send_core_config_();
uint8_t refresh_core_config_();
uint8_t set_discover_map_();
uint8_t set_listen_mode_routing_();
uint8_t start_discovery_();
uint8_t stop_discovery_();
uint8_t deactivate_(uint8_t type, uint16_t timeout = NFCC_DEFAULT_TIMEOUT);
void select_endpoint_();
uint8_t read_endpoint_data_(nfc::NfcTag &tag);
uint8_t clean_endpoint_(std::vector<uint8_t> &uid);
uint8_t format_endpoint_(std::vector<uint8_t> &uid);
uint8_t write_endpoint_(std::vector<uint8_t> &uid, std::shared_ptr<nfc::NdefMessage> &message);
std::unique_ptr<nfc::NfcTag> build_tag_(uint8_t mode_tech, const std::vector<uint8_t> &data);
optional<size_t> find_tag_uid_(const std::vector<uint8_t> &uid);
void purge_old_tags_();
void erase_tag_(uint8_t tag_index);
/// advance controller state as required
void nci_fsm_transition_();
/// set new controller state
void nci_fsm_set_state_(NCIState new_state);
/// setting controller to this state caused an error; returns true if too many errors/failures
bool nci_fsm_set_error_state_(NCIState new_state);
/// parse & process incoming messages from the NFCC
void process_message_();
void process_rf_intf_activated_oid_(nfc::NciMessage &rx);
void process_rf_discover_oid_(nfc::NciMessage &rx);
void process_rf_deactivate_oid_(nfc::NciMessage &rx);
void process_data_message_(nfc::NciMessage &rx);
void card_emu_t4t_get_response_(std::vector<uint8_t> &response, std::vector<uint8_t> &ndef_response);
uint8_t transceive_(nfc::NciMessage &tx, nfc::NciMessage &rx, uint16_t timeout = NFCC_DEFAULT_TIMEOUT,
bool expect_notification = true);
virtual uint8_t read_nfcc(nfc::NciMessage &rx, uint16_t timeout) = 0;
virtual uint8_t write_nfcc(nfc::NciMessage &tx) = 0;
uint8_t wait_for_irq_(uint16_t timeout = NFCC_DEFAULT_TIMEOUT, bool pin_state = true);
uint8_t read_mifare_classic_tag_(nfc::NfcTag &tag);
uint8_t read_mifare_classic_block_(uint8_t block_num, std::vector<uint8_t> &data);
uint8_t write_mifare_classic_block_(uint8_t block_num, std::vector<uint8_t> &data);
uint8_t auth_mifare_classic_block_(uint8_t block_num, uint8_t key_num, const uint8_t *key);
uint8_t sect_to_auth_(uint8_t block_num);
uint8_t format_mifare_classic_mifare_();
uint8_t format_mifare_classic_ndef_();
uint8_t write_mifare_classic_tag_(const std::shared_ptr<nfc::NdefMessage> &message);
uint8_t halt_mifare_classic_tag_();
uint8_t read_mifare_ultralight_tag_(nfc::NfcTag &tag);
uint8_t read_mifare_ultralight_bytes_(uint8_t start_page, uint16_t num_bytes, std::vector<uint8_t> &data);
bool is_mifare_ultralight_formatted_(const std::vector<uint8_t> &page_3_to_6);
uint16_t read_mifare_ultralight_capacity_();
uint8_t find_mifare_ultralight_ndef_(const std::vector<uint8_t> &page_3_to_6, uint8_t &message_length,
uint8_t &message_start_index);
uint8_t write_mifare_ultralight_page_(uint8_t page_num, std::vector<uint8_t> &write_data);
uint8_t write_mifare_ultralight_tag_(std::vector<uint8_t> &uid, const std::shared_ptr<nfc::NdefMessage> &message);
uint8_t clean_mifare_ultralight_();
enum NfcTask : uint8_t {
EP_READ = 0,
EP_CLEAN,
EP_FORMAT,
EP_WRITE,
} next_task_{EP_READ};
bool config_refresh_pending_{false};
bool core_config_is_solo_{false};
bool listening_enabled_{false};
bool polling_enabled_{true};
uint8_t error_count_{0};
uint8_t fail_count_{0};
uint32_t last_nci_state_change_{0};
uint8_t selecting_endpoint_{0};
uint32_t tag_ttl_{250};
GPIOPin *irq_pin_{nullptr};
GPIOPin *ven_pin_{nullptr};
CallbackManager<void()> on_emulated_tag_scan_callback_;
CallbackManager<void()> on_finished_write_callback_;
std::vector<DiscoveredEndpoint> discovered_endpoint_;
CardEmulationState ce_state_{CardEmulationState::CARD_EMU_IDLE};
NCIState nci_state_{NCIState::NFCC_RESET};
NCIState nci_state_error_{NCIState::NONE};
std::shared_ptr<nfc::NdefMessage> card_emulation_message_;
std::shared_ptr<nfc::NdefMessage> next_task_message_to_write_;
std::vector<nfc::NfcOnTagTrigger *> triggers_ontag_;
std::vector<nfc::NfcOnTagTrigger *> triggers_ontagremoved_;
};
} // namespace pn7150
} // namespace esphome

View File

@ -0,0 +1,322 @@
#include <memory>
#include "pn7150.h"
#include "esphome/core/log.h"
namespace esphome {
namespace pn7150 {
static const char *const TAG = "pn7150.mifare_classic";
uint8_t PN7150::read_mifare_classic_tag_(nfc::NfcTag &tag) {
uint8_t current_block = 4;
uint8_t message_start_index = 0;
uint32_t message_length = 0;
if (this->auth_mifare_classic_block_(current_block, nfc::MIFARE_CMD_AUTH_A, nfc::NDEF_KEY) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Tag auth failed while attempting to read tag data");
return nfc::STATUS_FAILED;
}
std::vector<uint8_t> data;
if (this->read_mifare_classic_block_(current_block, data) == nfc::STATUS_OK) {
if (!nfc::decode_mifare_classic_tlv(data, message_length, message_start_index)) {
return nfc::STATUS_FAILED;
}
} else {
ESP_LOGE(TAG, "Failed to read block %u", current_block);
return nfc::STATUS_FAILED;
}
uint32_t index = 0;
uint32_t buffer_size = nfc::get_mifare_classic_buffer_size(message_length);
std::vector<uint8_t> buffer;
while (index < buffer_size) {
if (nfc::mifare_classic_is_first_block(current_block)) {
if (this->auth_mifare_classic_block_(current_block, nfc::MIFARE_CMD_AUTH_A, nfc::NDEF_KEY) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Block authentication failed for %u", current_block);
return nfc::STATUS_FAILED;
}
}
std::vector<uint8_t> block_data;
if (this->read_mifare_classic_block_(current_block, block_data) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Error reading block %u", current_block);
return nfc::STATUS_FAILED;
} else {
buffer.insert(buffer.end(), block_data.begin(), block_data.end());
}
index += nfc::MIFARE_CLASSIC_BLOCK_SIZE;
current_block++;
if (nfc::mifare_classic_is_trailer_block(current_block)) {
current_block++;
}
}
if (buffer.begin() + message_start_index < buffer.end()) {
buffer.erase(buffer.begin(), buffer.begin() + message_start_index);
} else {
return nfc::STATUS_FAILED;
}
tag.set_ndef_message(make_unique<nfc::NdefMessage>(buffer));
return nfc::STATUS_OK;
}
uint8_t PN7150::read_mifare_classic_block_(uint8_t block_num, std::vector<uint8_t> &data) {
nfc::NciMessage rx;
nfc::NciMessage tx(nfc::NCI_PKT_MT_DATA, {XCHG_DATA_OID, nfc::MIFARE_CMD_READ, block_num});
ESP_LOGVV(TAG, "Read XCHG_DATA_REQ: %s", nfc::format_bytes(tx.get_message()).c_str());
if (this->transceive_(tx, rx) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Timeout reading tag data");
return nfc::STATUS_FAILED;
}
if ((!rx.message_type_is(nfc::NCI_PKT_MT_DATA)) || (!rx.simple_status_response_is(XCHG_DATA_OID)) ||
(!rx.message_length_is(18))) {
ESP_LOGE(TAG, "MFC read block failed - block 0x%02x", block_num);
ESP_LOGV(TAG, "Read response: %s", nfc::format_bytes(rx.get_message()).c_str());
return nfc::STATUS_FAILED;
}
data.insert(data.begin(), rx.get_message().begin() + 4, rx.get_message().end() - 1);
ESP_LOGVV(TAG, " Block %u: %s", block_num, nfc::format_bytes(data).c_str());
return nfc::STATUS_OK;
}
uint8_t PN7150::auth_mifare_classic_block_(uint8_t block_num, uint8_t key_num, const uint8_t *key) {
nfc::NciMessage rx;
nfc::NciMessage tx(nfc::NCI_PKT_MT_DATA, {MFC_AUTHENTICATE_OID, this->sect_to_auth_(block_num), key_num});
switch (key_num) {
case nfc::MIFARE_CMD_AUTH_A:
tx.get_message().back() = MFC_AUTHENTICATE_PARAM_KS_A;
break;
case nfc::MIFARE_CMD_AUTH_B:
tx.get_message().back() = MFC_AUTHENTICATE_PARAM_KS_B;
break;
default:
break;
}
if (key != nullptr) {
tx.get_message().back() |= MFC_AUTHENTICATE_PARAM_EMBED_KEY;
tx.get_message().insert(tx.get_message().end(), key, key + 6);
}
ESP_LOGVV(TAG, "MFC_AUTHENTICATE_REQ: %s", nfc::format_bytes(tx.get_message()).c_str());
if (this->transceive_(tx, rx) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Sending MFC_AUTHENTICATE_REQ failed");
return nfc::STATUS_FAILED;
}
if ((!rx.message_type_is(nfc::NCI_PKT_MT_DATA)) || (!rx.simple_status_response_is(MFC_AUTHENTICATE_OID)) ||
(rx.get_message()[4] != nfc::STATUS_OK)) {
ESP_LOGE(TAG, "MFC authentication failed - block 0x%02x", block_num);
ESP_LOGVV(TAG, "MFC_AUTHENTICATE_RSP: %s", nfc::format_bytes(rx.get_message()).c_str());
return nfc::STATUS_FAILED;
}
ESP_LOGV(TAG, "MFC block %u authentication succeeded", block_num);
return nfc::STATUS_OK;
}
uint8_t PN7150::sect_to_auth_(const uint8_t block_num) {
const uint8_t first_high_block = nfc::MIFARE_CLASSIC_BLOCKS_PER_SECT_LOW * nfc::MIFARE_CLASSIC_16BLOCK_SECT_START;
if (block_num >= first_high_block) {
return ((block_num - first_high_block) / nfc::MIFARE_CLASSIC_BLOCKS_PER_SECT_HIGH) +
nfc::MIFARE_CLASSIC_16BLOCK_SECT_START;
}
return block_num / nfc::MIFARE_CLASSIC_BLOCKS_PER_SECT_LOW;
}
uint8_t PN7150::format_mifare_classic_mifare_() {
std::vector<uint8_t> blank_buffer(
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
std::vector<uint8_t> trailer_buffer(
{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x07, 0x80, 0x69, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF});
auto status = nfc::STATUS_OK;
for (int block = 0; block < 64; block += 4) {
if (this->auth_mifare_classic_block_(block + 3, nfc::MIFARE_CMD_AUTH_B, nfc::DEFAULT_KEY) != nfc::STATUS_OK) {
continue;
}
if (block != 0) {
if (this->write_mifare_classic_block_(block, blank_buffer) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Unable to write block %u", block);
status = nfc::STATUS_FAILED;
}
}
if (this->write_mifare_classic_block_(block + 1, blank_buffer) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Unable to write block %u", block + 1);
status = nfc::STATUS_FAILED;
}
if (this->write_mifare_classic_block_(block + 2, blank_buffer) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Unable to write block %u", block + 2);
status = nfc::STATUS_FAILED;
}
if (this->write_mifare_classic_block_(block + 3, trailer_buffer) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Unable to write block %u", block + 3);
status = nfc::STATUS_FAILED;
}
}
return status;
}
uint8_t PN7150::format_mifare_classic_ndef_() {
std::vector<uint8_t> empty_ndef_message(
{0x03, 0x03, 0xD0, 0x00, 0x00, 0xFE, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
std::vector<uint8_t> blank_block(
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
std::vector<uint8_t> block_1_data(
{0x14, 0x01, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1});
std::vector<uint8_t> block_2_data(
{0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1});
std::vector<uint8_t> block_3_trailer(
{0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0x78, 0x77, 0x88, 0xC1, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF});
std::vector<uint8_t> ndef_trailer(
{0xD3, 0xF7, 0xD3, 0xF7, 0xD3, 0xF7, 0x7F, 0x07, 0x88, 0x40, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF});
if (this->auth_mifare_classic_block_(0, nfc::MIFARE_CMD_AUTH_B, nfc::DEFAULT_KEY) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Unable to authenticate block 0 for formatting");
return nfc::STATUS_FAILED;
}
if (this->write_mifare_classic_block_(1, block_1_data) != nfc::STATUS_OK) {
return nfc::STATUS_FAILED;
}
if (this->write_mifare_classic_block_(2, block_2_data) != nfc::STATUS_OK) {
return nfc::STATUS_FAILED;
}
if (this->write_mifare_classic_block_(3, block_3_trailer) != nfc::STATUS_OK) {
return nfc::STATUS_FAILED;
}
ESP_LOGD(TAG, "Sector 0 formatted with NDEF");
auto status = nfc::STATUS_OK;
for (int block = 4; block < 64; block += 4) {
if (this->auth_mifare_classic_block_(block + 3, nfc::MIFARE_CMD_AUTH_B, nfc::DEFAULT_KEY) != nfc::STATUS_OK) {
return nfc::STATUS_FAILED;
}
if (block == 4) {
if (this->write_mifare_classic_block_(block, empty_ndef_message) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Unable to write block %u", block);
status = nfc::STATUS_FAILED;
}
} else {
if (this->write_mifare_classic_block_(block, blank_block) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Unable to write block %u", block);
status = nfc::STATUS_FAILED;
}
}
if (this->write_mifare_classic_block_(block + 1, blank_block) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Unable to write block %u", block + 1);
status = nfc::STATUS_FAILED;
}
if (this->write_mifare_classic_block_(block + 2, blank_block) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Unable to write block %u", block + 2);
status = nfc::STATUS_FAILED;
}
if (this->write_mifare_classic_block_(block + 3, ndef_trailer) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Unable to write trailer block %u", block + 3);
status = nfc::STATUS_FAILED;
}
}
return status;
}
uint8_t PN7150::write_mifare_classic_block_(uint8_t block_num, std::vector<uint8_t> &write_data) {
nfc::NciMessage rx;
nfc::NciMessage tx(nfc::NCI_PKT_MT_DATA, {XCHG_DATA_OID, nfc::MIFARE_CMD_WRITE, block_num});
ESP_LOGVV(TAG, "Write XCHG_DATA_REQ 1: %s", nfc::format_bytes(tx.get_message()).c_str());
if (this->transceive_(tx, rx) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Sending XCHG_DATA_REQ failed");
return nfc::STATUS_FAILED;
}
// write command part two
tx.set_payload({XCHG_DATA_OID});
tx.get_message().insert(tx.get_message().end(), write_data.begin(), write_data.end());
ESP_LOGVV(TAG, "Write XCHG_DATA_REQ 2: %s", nfc::format_bytes(tx.get_message()).c_str());
if (this->transceive_(tx, rx, NFCC_TAG_WRITE_TIMEOUT) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "MFC XCHG_DATA timed out waiting for XCHG_DATA_RSP during block write");
return nfc::STATUS_FAILED;
}
if ((!rx.message_type_is(nfc::NCI_PKT_MT_DATA)) || (!rx.simple_status_response_is(XCHG_DATA_OID)) ||
(rx.get_message()[4] != nfc::MIFARE_CMD_ACK)) {
ESP_LOGE(TAG, "MFC write block failed - block 0x%02x", block_num);
ESP_LOGV(TAG, "Write response: %s", nfc::format_bytes(rx.get_message()).c_str());
return nfc::STATUS_FAILED;
}
return nfc::STATUS_OK;
}
uint8_t PN7150::write_mifare_classic_tag_(const std::shared_ptr<nfc::NdefMessage> &message) {
auto encoded = message->encode();
uint32_t message_length = encoded.size();
uint32_t buffer_length = nfc::get_mifare_classic_buffer_size(message_length);
encoded.insert(encoded.begin(), 0x03);
if (message_length < 255) {
encoded.insert(encoded.begin() + 1, message_length);
} else {
encoded.insert(encoded.begin() + 1, 0xFF);
encoded.insert(encoded.begin() + 2, (message_length >> 8) & 0xFF);
encoded.insert(encoded.begin() + 3, message_length & 0xFF);
}
encoded.push_back(0xFE);
encoded.resize(buffer_length, 0);
uint32_t index = 0;
uint8_t current_block = 4;
while (index < buffer_length) {
if (nfc::mifare_classic_is_first_block(current_block)) {
if (this->auth_mifare_classic_block_(current_block, nfc::MIFARE_CMD_AUTH_A, nfc::NDEF_KEY) != nfc::STATUS_OK) {
return nfc::STATUS_FAILED;
}
}
std::vector<uint8_t> data(encoded.begin() + index, encoded.begin() + index + nfc::MIFARE_CLASSIC_BLOCK_SIZE);
if (this->write_mifare_classic_block_(current_block, data) != nfc::STATUS_OK) {
return nfc::STATUS_FAILED;
}
index += nfc::MIFARE_CLASSIC_BLOCK_SIZE;
current_block++;
if (nfc::mifare_classic_is_trailer_block(current_block)) {
// Skipping as cannot write to trailer
current_block++;
}
}
return nfc::STATUS_OK;
}
uint8_t PN7150::halt_mifare_classic_tag_() {
nfc::NciMessage rx;
nfc::NciMessage tx(nfc::NCI_PKT_MT_DATA, {XCHG_DATA_OID, nfc::MIFARE_CMD_HALT, 0});
ESP_LOGVV(TAG, "Halt XCHG_DATA_REQ: %s", nfc::format_bytes(tx.get_message()).c_str());
if (this->transceive_(tx, rx, NFCC_TAG_WRITE_TIMEOUT) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Sending halt XCHG_DATA_REQ failed");
return nfc::STATUS_FAILED;
}
return nfc::STATUS_OK;
}
} // namespace pn7150
} // namespace esphome

View File

@ -0,0 +1,186 @@
#include <cinttypes>
#include <memory>
#include "pn7150.h"
#include "esphome/core/log.h"
namespace esphome {
namespace pn7150 {
static const char *const TAG = "pn7150.mifare_ultralight";
uint8_t PN7150::read_mifare_ultralight_tag_(nfc::NfcTag &tag) {
std::vector<uint8_t> data;
// pages 3 to 6 contain various info we are interested in -- do one read to grab it all
if (this->read_mifare_ultralight_bytes_(3, nfc::MIFARE_ULTRALIGHT_PAGE_SIZE * nfc::MIFARE_ULTRALIGHT_READ_SIZE,
data) != nfc::STATUS_OK) {
return nfc::STATUS_FAILED;
}
if (!this->is_mifare_ultralight_formatted_(data)) {
ESP_LOGW(TAG, "Not NDEF formatted");
return nfc::STATUS_FAILED;
}
uint8_t message_length;
uint8_t message_start_index;
if (this->find_mifare_ultralight_ndef_(data, message_length, message_start_index) != nfc::STATUS_OK) {
ESP_LOGW(TAG, "Couldn't find NDEF message");
return nfc::STATUS_FAILED;
}
ESP_LOGVV(TAG, "NDEF message length: %u, start: %u", message_length, message_start_index);
if (message_length == 0) {
return nfc::STATUS_FAILED;
}
// we already read pages 3-6 earlier -- pick up where we left off so we're not re-reading pages
const uint8_t read_length = message_length + message_start_index > 12 ? message_length + message_start_index - 12 : 0;
if (read_length) {
if (read_mifare_ultralight_bytes_(nfc::MIFARE_ULTRALIGHT_DATA_START_PAGE + 3, read_length, data) !=
nfc::STATUS_OK) {
ESP_LOGE(TAG, "Error reading tag data");
return nfc::STATUS_FAILED;
}
}
// we need to trim off page 3 as well as any bytes ahead of message_start_index
data.erase(data.begin(), data.begin() + message_start_index + nfc::MIFARE_ULTRALIGHT_PAGE_SIZE);
tag.set_ndef_message(make_unique<nfc::NdefMessage>(data));
return nfc::STATUS_OK;
}
uint8_t PN7150::read_mifare_ultralight_bytes_(uint8_t start_page, uint16_t num_bytes, std::vector<uint8_t> &data) {
const uint8_t read_increment = nfc::MIFARE_ULTRALIGHT_READ_SIZE * nfc::MIFARE_ULTRALIGHT_PAGE_SIZE;
nfc::NciMessage rx;
nfc::NciMessage tx(nfc::NCI_PKT_MT_DATA, {nfc::MIFARE_CMD_READ, start_page});
for (size_t i = 0; i * read_increment < num_bytes; i++) {
tx.get_message().back() = i * nfc::MIFARE_ULTRALIGHT_READ_SIZE + start_page;
do { // loop because sometimes we struggle here...???...
if (this->transceive_(tx, rx) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Error reading tag data");
return nfc::STATUS_FAILED;
}
} while (rx.get_payload_size() < read_increment);
uint16_t bytes_offset = (i + 1) * read_increment;
auto pages_in_end_itr = bytes_offset <= num_bytes ? rx.get_message().end() - 1
: rx.get_message().end() - (bytes_offset - num_bytes + 1);
if ((pages_in_end_itr > rx.get_message().begin()) && (pages_in_end_itr < rx.get_message().end())) {
data.insert(data.end(), rx.get_message().begin() + nfc::NCI_PKT_HEADER_SIZE, pages_in_end_itr);
}
}
ESP_LOGVV(TAG, "Data read: %s", nfc::format_bytes(data).c_str());
return nfc::STATUS_OK;
}
bool PN7150::is_mifare_ultralight_formatted_(const std::vector<uint8_t> &page_3_to_6) {
const uint8_t p4_offset = nfc::MIFARE_ULTRALIGHT_PAGE_SIZE; // page 4 will begin 4 bytes into the vector
return (page_3_to_6.size() > p4_offset + 3) &&
!((page_3_to_6[p4_offset + 0] == 0xFF) && (page_3_to_6[p4_offset + 1] == 0xFF) &&
(page_3_to_6[p4_offset + 2] == 0xFF) && (page_3_to_6[p4_offset + 3] == 0xFF));
}
uint16_t PN7150::read_mifare_ultralight_capacity_() {
std::vector<uint8_t> data;
if (this->read_mifare_ultralight_bytes_(3, nfc::MIFARE_ULTRALIGHT_PAGE_SIZE, data) == nfc::STATUS_OK) {
ESP_LOGV(TAG, "Tag capacity is %u bytes", data[2] * 8U);
return data[2] * 8U;
}
return 0;
}
uint8_t PN7150::find_mifare_ultralight_ndef_(const std::vector<uint8_t> &page_3_to_6, uint8_t &message_length,
uint8_t &message_start_index) {
const uint8_t p4_offset = nfc::MIFARE_ULTRALIGHT_PAGE_SIZE; // page 4 will begin 4 bytes into the vector
if (!(page_3_to_6.size() > p4_offset + 5)) {
return nfc::STATUS_FAILED;
}
if (page_3_to_6[p4_offset + 0] == 0x03) {
message_length = page_3_to_6[p4_offset + 1];
message_start_index = 2;
return nfc::STATUS_OK;
} else if (page_3_to_6[p4_offset + 5] == 0x03) {
message_length = page_3_to_6[p4_offset + 6];
message_start_index = 7;
return nfc::STATUS_OK;
}
return nfc::STATUS_FAILED;
}
uint8_t PN7150::write_mifare_ultralight_tag_(std::vector<uint8_t> &uid,
const std::shared_ptr<nfc::NdefMessage> &message) {
uint32_t capacity = this->read_mifare_ultralight_capacity_();
auto encoded = message->encode();
uint32_t message_length = encoded.size();
uint32_t buffer_length = nfc::get_mifare_ultralight_buffer_size(message_length);
if (buffer_length > capacity) {
ESP_LOGE(TAG, "Message length exceeds tag capacity %" PRIu32 " > %" PRIu32, buffer_length, capacity);
return nfc::STATUS_FAILED;
}
encoded.insert(encoded.begin(), 0x03);
if (message_length < 255) {
encoded.insert(encoded.begin() + 1, message_length);
} else {
encoded.insert(encoded.begin() + 1, 0xFF);
encoded.insert(encoded.begin() + 2, (message_length >> 8) & 0xFF);
encoded.insert(encoded.begin() + 2, message_length & 0xFF);
}
encoded.push_back(0xFE);
encoded.resize(buffer_length, 0);
uint32_t index = 0;
uint8_t current_page = nfc::MIFARE_ULTRALIGHT_DATA_START_PAGE;
while (index < buffer_length) {
std::vector<uint8_t> data(encoded.begin() + index, encoded.begin() + index + nfc::MIFARE_ULTRALIGHT_PAGE_SIZE);
if (this->write_mifare_ultralight_page_(current_page, data) != nfc::STATUS_OK) {
return nfc::STATUS_FAILED;
}
index += nfc::MIFARE_ULTRALIGHT_PAGE_SIZE;
current_page++;
}
return nfc::STATUS_OK;
}
uint8_t PN7150::clean_mifare_ultralight_() {
uint32_t capacity = this->read_mifare_ultralight_capacity_();
uint8_t pages = (capacity / nfc::MIFARE_ULTRALIGHT_PAGE_SIZE) + nfc::MIFARE_ULTRALIGHT_DATA_START_PAGE;
std::vector<uint8_t> blank_data = {0x00, 0x00, 0x00, 0x00};
for (int i = nfc::MIFARE_ULTRALIGHT_DATA_START_PAGE; i < pages; i++) {
if (this->write_mifare_ultralight_page_(i, blank_data) != nfc::STATUS_OK) {
return nfc::STATUS_FAILED;
}
}
return nfc::STATUS_OK;
}
uint8_t PN7150::write_mifare_ultralight_page_(uint8_t page_num, std::vector<uint8_t> &write_data) {
std::vector<uint8_t> payload = {nfc::MIFARE_CMD_WRITE_ULTRALIGHT, page_num};
payload.insert(payload.end(), write_data.begin(), write_data.end());
nfc::NciMessage rx;
nfc::NciMessage tx(nfc::NCI_PKT_MT_DATA, payload);
if (this->transceive_(tx, rx, NFCC_TAG_WRITE_TIMEOUT) != nfc::STATUS_OK) {
ESP_LOGE(TAG, "Error writing page %u", page_num);
return nfc::STATUS_FAILED;
}
return nfc::STATUS_OK;
}
} // namespace pn7150
} // namespace esphome

View File

@ -0,0 +1,25 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import i2c, pn7150
from esphome.const import CONF_ID
AUTO_LOAD = ["pn7150"]
CODEOWNERS = ["@kbx81", "@jesserockz"]
DEPENDENCIES = ["i2c"]
pn7150_i2c_ns = cg.esphome_ns.namespace("pn7150_i2c")
PN7150I2C = pn7150_i2c_ns.class_("PN7150I2C", pn7150.PN7150, i2c.I2CDevice)
CONFIG_SCHEMA = cv.All(
pn7150.PN7150_SCHEMA.extend(
{
cv.GenerateID(): cv.declare_id(PN7150I2C),
}
).extend(i2c.i2c_device_schema(0x28))
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await pn7150.setup_pn7150(var, config)
await i2c.register_i2c_device(var, config)

View File

@ -0,0 +1,49 @@
#include "pn7150_i2c.h"
#include "esphome/core/log.h"
#include "esphome/core/hal.h"
namespace esphome {
namespace pn7150_i2c {
static const char *const TAG = "pn7150_i2c";
uint8_t PN7150I2C::read_nfcc(nfc::NciMessage &rx, const uint16_t timeout) {
if (this->wait_for_irq_(timeout) != nfc::STATUS_OK) {
ESP_LOGW(TAG, "read_nfcc_() timeout waiting for IRQ");
return nfc::STATUS_FAILED;
}
rx.get_message().resize(nfc::NCI_PKT_HEADER_SIZE);
if (!this->read_bytes_raw(rx.get_message().data(), nfc::NCI_PKT_HEADER_SIZE)) {
return nfc::STATUS_FAILED;
}
uint8_t length = rx.get_payload_size();
if (length > 0) {
rx.get_message().resize(length + nfc::NCI_PKT_HEADER_SIZE);
if (!this->read_bytes_raw(rx.get_message().data() + nfc::NCI_PKT_HEADER_SIZE, length)) {
return nfc::STATUS_FAILED;
}
}
// semaphore to ensure transaction is complete before returning
if (this->wait_for_irq_(pn7150::NFCC_DEFAULT_TIMEOUT, false) != nfc::STATUS_OK) {
ESP_LOGW(TAG, "read_nfcc_() post-read timeout waiting for IRQ line to clear");
return nfc::STATUS_FAILED;
}
return nfc::STATUS_OK;
}
uint8_t PN7150I2C::write_nfcc(nfc::NciMessage &tx) {
if (this->write(tx.encode().data(), tx.encode().size()) == i2c::ERROR_OK) {
return nfc::STATUS_OK;
}
return nfc::STATUS_FAILED;
}
void PN7150I2C::dump_config() {
PN7150::dump_config();
LOG_I2C_DEVICE(this);
}
} // namespace pn7150_i2c
} // namespace esphome

View File

@ -0,0 +1,22 @@
#pragma once
#include "esphome/core/component.h"
#include "esphome/components/pn7150/pn7150.h"
#include "esphome/components/i2c/i2c.h"
#include <vector>
namespace esphome {
namespace pn7150_i2c {
class PN7150I2C : public pn7150::PN7150, public i2c::I2CDevice {
public:
void dump_config() override;
protected:
uint8_t read_nfcc(nfc::NciMessage &rx, uint16_t timeout) override;
uint8_t write_nfcc(nfc::NciMessage &tx) override;
};
} // namespace pn7150_i2c
} // namespace esphome

View File

@ -3388,6 +3388,15 @@ pn532_spi:
pn532_i2c: pn532_i2c:
i2c_id: i2c_bus i2c_id: i2c_bus
pn7150_i2c:
i2c_id: i2c_bus
irq_pin:
allow_other_uses: true
number: GPIO32
ven_pin:
allow_other_uses: true
number: GPIO16
pn7160_i2c: pn7160_i2c:
id: nfcc_pn7160_i2c id: nfcc_pn7160_i2c
i2c_id: i2c_bus i2c_id: i2c_bus