Add climate.hitachi_ac344 (#1336)

* Add climate.hitachi_ac344

* Add Hitachi AC344 Climate IR test

* Fixes unhandled switch-case in fan-mode

* Fixes logging format

* Fixes file mode

* Lint clang-tidy

* Lint clang-tidy

* Static cast float to uint8
git push

* Remove comment and debug code

* Change log verbosity to VV
This commit is contained in:
MoA 2020-11-18 09:05:12 +08:00 committed by GitHub
parent 63d8071dbd
commit a9a00f139b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 507 additions and 0 deletions

View File

@ -0,0 +1,18 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import climate_ir
from esphome.const import CONF_ID
AUTO_LOAD = ['climate_ir']
hitachi_ac344_ns = cg.esphome_ns.namespace('hitachi_ac344')
HitachiClimate = hitachi_ac344_ns.class_('HitachiClimate', climate_ir.ClimateIR)
CONFIG_SCHEMA = climate_ir.CLIMATE_IR_WITH_RECEIVER_SCHEMA.extend({
cv.GenerateID(): cv.declare_id(HitachiClimate),
})
def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
yield climate_ir.register_climate_ir(var, config)

View File

@ -0,0 +1,365 @@
#include "hitachi_ac344.h"
namespace esphome {
namespace hitachi_ac344 {
static const char *TAG = "climate.hitachi_ac344";
void set_bits(uint8_t *const dst, const uint8_t offset, const uint8_t nbits, const uint8_t data) {
if (offset >= 8 || !nbits)
return; // Short circuit as it won't change.
// Calculate the mask for the supplied value.
uint8_t mask = UINT8_MAX >> (8 - ((nbits > 8) ? 8 : nbits));
// Calculate the mask & clear the space for the data.
// Clear the destination bits.
*dst &= ~(uint8_t)(mask << offset);
// Merge in the data.
*dst |= ((data & mask) << offset);
}
void set_bit(uint8_t *const data, const uint8_t position, const bool on) {
uint8_t mask = 1 << position;
if (on)
*data |= mask;
else
*data &= ~mask;
}
uint8_t *invert_byte_pairs(uint8_t *ptr, const uint16_t length) {
for (uint16_t i = 1; i < length; i += 2) {
// Code done this way to avoid a compiler warning bug.
uint8_t inv = ~*(ptr + i - 1);
*(ptr + i) = inv;
}
return ptr;
}
bool HitachiClimate::get_power_() { return remote_state_[HITACHI_AC344_POWER_BYTE] == HITACHI_AC344_POWER_ON; }
void HitachiClimate::set_power_(bool on) {
set_button_(HITACHI_AC344_BUTTON_POWER);
remote_state_[HITACHI_AC344_POWER_BYTE] = on ? HITACHI_AC344_POWER_ON : HITACHI_AC344_POWER_OFF;
}
uint8_t HitachiClimate::get_mode_() { return remote_state_[HITACHI_AC344_MODE_BYTE] & 0xF; }
void HitachiClimate::set_mode_(uint8_t mode) {
uint8_t new_mode = mode;
switch (mode) {
// Fan mode sets a special temp.
case HITACHI_AC344_MODE_FAN:
set_temp_(HITACHI_AC344_TEMP_FAN, false);
break;
case HITACHI_AC344_MODE_HEAT:
case HITACHI_AC344_MODE_COOL:
case HITACHI_AC344_MODE_DRY:
break;
default:
new_mode = HITACHI_AC344_MODE_COOL;
}
set_bits(&remote_state_[HITACHI_AC344_MODE_BYTE], 0, 4, new_mode);
if (new_mode != HITACHI_AC344_MODE_FAN)
set_temp_(previous_temp_);
set_fan_(get_fan_()); // Reset the fan speed after the mode change.
set_power_(true);
}
void HitachiClimate::set_temp_(uint8_t celsius, bool set_previous) {
uint8_t temp;
temp = std::min(celsius, HITACHI_AC344_TEMP_MAX);
temp = std::max(temp, HITACHI_AC344_TEMP_MIN);
set_bits(&remote_state_[HITACHI_AC344_TEMP_BYTE], HITACHI_AC344_TEMP_OFFSET, HITACHI_AC344_TEMP_SIZE, temp);
if (previous_temp_ > temp)
set_button_(HITACHI_AC344_BUTTON_TEMP_DOWN);
else if (previous_temp_ < temp)
set_button_(HITACHI_AC344_BUTTON_TEMP_UP);
if (set_previous)
previous_temp_ = temp;
}
uint8_t HitachiClimate::get_fan_() { return remote_state_[HITACHI_AC344_FAN_BYTE] >> 4 & 0xF; }
void HitachiClimate::set_fan_(uint8_t speed) {
uint8_t new_speed = std::max(speed, HITACHI_AC344_FAN_MIN);
uint8_t fan_max = HITACHI_AC344_FAN_MAX;
// Only 2 x low speeds in Dry mode or Auto
if (get_mode_() == HITACHI_AC344_MODE_DRY && speed == HITACHI_AC344_FAN_AUTO) {
fan_max = HITACHI_AC344_FAN_AUTO;
} else if (get_mode_() == HITACHI_AC344_MODE_DRY) {
fan_max = HITACHI_AC344_FAN_MAX_DRY;
} else if (get_mode_() == HITACHI_AC344_MODE_FAN && speed == HITACHI_AC344_FAN_AUTO) {
// Fan Mode does not have auto. Set to safe low
new_speed = HITACHI_AC344_FAN_MIN;
}
new_speed = std::min(new_speed, fan_max);
// Handle the setting the button value if we are going to change the value.
if (new_speed != get_fan_())
set_button_(HITACHI_AC344_BUTTON_FAN);
// Set the values
set_bits(&remote_state_[HITACHI_AC344_FAN_BYTE], 4, 4, new_speed);
remote_state_[9] = 0x92;
// When fan is at min/max, additional bytes seem to be set
if (new_speed == HITACHI_AC344_FAN_MIN)
remote_state_[9] = 0x98;
remote_state_[29] = 0x01;
}
void HitachiClimate::set_swing_v_toggle_(bool on) {
uint8_t button = get_button_(); // Get the current button value.
if (on)
button = HITACHI_AC344_BUTTON_SWINGV; // Set the button to SwingV.
else if (button == HITACHI_AC344_BUTTON_SWINGV) // Asked to unset it
// It was set previous, so use Power as a default
button = HITACHI_AC344_BUTTON_POWER;
set_button_(button);
}
bool HitachiClimate::get_swing_v_toggle_() { return get_button_() == HITACHI_AC344_BUTTON_SWINGV; }
void HitachiClimate::set_swing_v_(bool on) {
set_swing_v_toggle_(on); // Set the button value.
set_bit(&remote_state_[HITACHI_AC344_SWINGV_BYTE], HITACHI_AC344_SWINGV_OFFSET, on);
}
bool HitachiClimate::get_swing_v_() {
return GETBIT8(remote_state_[HITACHI_AC344_SWINGV_BYTE], HITACHI_AC344_SWINGV_OFFSET);
}
void HitachiClimate::set_swing_h_(uint8_t position) {
if (position > HITACHI_AC344_SWINGH_LEFT_MAX)
return set_swing_h_(HITACHI_AC344_SWINGH_MIDDLE);
set_bits(&remote_state_[HITACHI_AC344_SWINGH_BYTE], HITACHI_AC344_SWINGH_OFFSET, HITACHI_AC344_SWINGH_SIZE, position);
set_button_(HITACHI_AC344_BUTTON_SWINGH);
}
uint8_t HitachiClimate::get_swing_h_() {
return GETBITS8(remote_state_[HITACHI_AC344_SWINGH_BYTE], HITACHI_AC344_SWINGH_OFFSET, HITACHI_AC344_SWINGH_SIZE);
}
uint8_t HitachiClimate::get_button_() { return remote_state_[HITACHI_AC344_BUTTON_BYTE]; }
void HitachiClimate::set_button_(uint8_t button) { remote_state_[HITACHI_AC344_BUTTON_BYTE] = button; }
void HitachiClimate::transmit_state() {
switch (this->mode) {
case climate::CLIMATE_MODE_COOL:
set_mode_(HITACHI_AC344_MODE_COOL);
break;
case climate::CLIMATE_MODE_DRY:
set_mode_(HITACHI_AC344_MODE_DRY);
break;
case climate::CLIMATE_MODE_HEAT:
set_mode_(HITACHI_AC344_MODE_HEAT);
break;
case climate::CLIMATE_MODE_AUTO:
set_mode_(HITACHI_AC344_MODE_AUTO);
break;
case climate::CLIMATE_MODE_FAN_ONLY:
set_mode_(HITACHI_AC344_MODE_FAN);
break;
case climate::CLIMATE_MODE_OFF:
set_power_(false);
break;
}
set_temp_(static_cast<uint8_t>(this->target_temperature));
switch (this->fan_mode) {
case climate::CLIMATE_FAN_LOW:
set_fan_(HITACHI_AC344_FAN_LOW);
break;
case climate::CLIMATE_FAN_MEDIUM:
set_fan_(HITACHI_AC344_FAN_MEDIUM);
break;
case climate::CLIMATE_FAN_HIGH:
set_fan_(HITACHI_AC344_FAN_HIGH);
break;
case climate::CLIMATE_FAN_ON:
case climate::CLIMATE_FAN_AUTO:
default:
set_fan_(HITACHI_AC344_FAN_AUTO);
}
switch (this->swing_mode) {
case climate::CLIMATE_SWING_BOTH:
set_swing_v_(true);
set_swing_h_(HITACHI_AC344_SWINGH_AUTO);
break;
case climate::CLIMATE_SWING_VERTICAL:
set_swing_v_(true);
set_swing_h_(HITACHI_AC344_SWINGH_MIDDLE);
break;
case climate::CLIMATE_SWING_HORIZONTAL:
set_swing_v_(false);
set_swing_h_(HITACHI_AC344_SWINGH_AUTO);
break;
case climate::CLIMATE_SWING_OFF:
set_swing_v_(false);
set_swing_h_(HITACHI_AC344_SWINGH_MIDDLE);
break;
}
// TODO: find change value to set button, now always set to power button
set_button_(HITACHI_AC344_BUTTON_POWER);
invert_byte_pairs(remote_state_ + 3, HITACHI_AC344_STATE_LENGTH - 3);
auto transmit = this->transmitter_->transmit();
auto data = transmit.get_data();
data->set_carrier_frequency(HITACHI_AC344_FREQ);
uint8_t repeat = 0;
for (uint8_t r = 0; r <= repeat; r++) {
// Header
data->item(HITACHI_AC344_HDR_MARK, HITACHI_AC344_HDR_SPACE);
// Data
for (uint8_t i : remote_state_) {
for (uint8_t j = 0; j < 8; j++) {
data->mark(HITACHI_AC344_BIT_MARK);
bool bit = i & (1 << j);
data->space(bit ? HITACHI_AC344_ONE_SPACE : HITACHI_AC344_ZERO_SPACE);
}
}
// Footer
data->item(HITACHI_AC344_BIT_MARK, HITACHI_AC344_MIN_GAP);
}
transmit.perform();
dump_state_("Sent", remote_state_);
}
bool HitachiClimate::parse_mode_(const uint8_t remote_state[]) {
uint8_t power = remote_state[HITACHI_AC344_POWER_BYTE];
ESP_LOGV(TAG, "Power: %02X %02X", remote_state[HITACHI_AC344_POWER_BYTE], power);
uint8_t mode = remote_state[HITACHI_AC344_MODE_BYTE] & 0xF;
ESP_LOGV(TAG, "Mode: %02X %02X", remote_state[HITACHI_AC344_MODE_BYTE], mode);
if (power == HITACHI_AC344_POWER_ON) {
switch (mode) {
case HITACHI_AC344_MODE_COOL:
this->mode = climate::CLIMATE_MODE_COOL;
break;
case HITACHI_AC344_MODE_DRY:
this->mode = climate::CLIMATE_MODE_DRY;
break;
case HITACHI_AC344_MODE_HEAT:
this->mode = climate::CLIMATE_MODE_HEAT;
break;
case HITACHI_AC344_MODE_AUTO:
this->mode = climate::CLIMATE_MODE_AUTO;
break;
case HITACHI_AC344_MODE_FAN:
this->mode = climate::CLIMATE_MODE_FAN_ONLY;
break;
}
} else {
this->mode = climate::CLIMATE_MODE_OFF;
}
return true;
}
bool HitachiClimate::parse_temperature_(const uint8_t remote_state[]) {
uint8_t temperature =
GETBITS8(remote_state[HITACHI_AC344_TEMP_BYTE], HITACHI_AC344_TEMP_OFFSET, HITACHI_AC344_TEMP_SIZE);
this->target_temperature = temperature;
ESP_LOGV(TAG, "Temperature: %02X %02u %04f", remote_state[HITACHI_AC344_TEMP_BYTE], temperature,
this->target_temperature);
return true;
}
bool HitachiClimate::parse_fan_(const uint8_t remote_state[]) {
uint8_t fan_mode = remote_state[HITACHI_AC344_FAN_BYTE] >> 4 & 0xF;
ESP_LOGV(TAG, "Fan: %02X %02X", remote_state[HITACHI_AC344_FAN_BYTE], fan_mode);
switch (fan_mode) {
case HITACHI_AC344_FAN_MIN:
case HITACHI_AC344_FAN_LOW:
this->fan_mode = climate::CLIMATE_FAN_LOW;
break;
case HITACHI_AC344_FAN_MEDIUM:
this->fan_mode = climate::CLIMATE_FAN_MEDIUM;
break;
case HITACHI_AC344_FAN_HIGH:
case HITACHI_AC344_FAN_MAX:
this->fan_mode = climate::CLIMATE_FAN_HIGH;
break;
case HITACHI_AC344_FAN_AUTO:
this->fan_mode = climate::CLIMATE_FAN_AUTO;
break;
}
return true;
}
bool HitachiClimate::parse_swing_(const uint8_t remote_state[]) {
uint8_t swing_modeh =
GETBITS8(remote_state[HITACHI_AC344_SWINGH_BYTE], HITACHI_AC344_SWINGH_OFFSET, HITACHI_AC344_SWINGH_SIZE);
ESP_LOGV(TAG, "SwingH: %02X %02X", remote_state[HITACHI_AC344_SWINGH_BYTE], swing_modeh);
if ((swing_modeh & 0x7) == 0x0) {
this->swing_mode = climate::CLIMATE_SWING_HORIZONTAL;
} else if ((swing_modeh & 0x3) == 0x3) {
this->swing_mode = climate::CLIMATE_SWING_OFF;
} else {
this->swing_mode = climate::CLIMATE_SWING_HORIZONTAL;
}
return true;
}
bool HitachiClimate::on_receive(remote_base::RemoteReceiveData data) {
// Validate header
if (!data.expect_item(HITACHI_AC344_HDR_MARK, HITACHI_AC344_HDR_SPACE)) {
ESP_LOGVV(TAG, "Header fail");
return false;
}
uint8_t recv_state[HITACHI_AC344_STATE_LENGTH] = {0};
// Read all bytes.
for (uint8_t pos = 0; pos < HITACHI_AC344_STATE_LENGTH; pos++) {
// Read bit
for (int8_t bit = 0; bit < 8; bit++) {
if (data.expect_item(HITACHI_AC344_BIT_MARK, HITACHI_AC344_ONE_SPACE))
recv_state[pos] |= 1 << bit;
else if (!data.expect_item(HITACHI_AC344_BIT_MARK, HITACHI_AC344_ZERO_SPACE)) {
ESP_LOGVV(TAG, "Byte %d bit %d fail", pos, bit);
return false;
}
}
}
// Validate footer
if (!data.expect_mark(HITACHI_AC344_BIT_MARK)) {
ESP_LOGVV(TAG, "Footer fail");
return false;
}
dump_state_("Recv", recv_state);
// parse mode
this->parse_mode_(recv_state);
// parse temperature
this->parse_temperature_(recv_state);
// parse fan
this->parse_fan_(recv_state);
// parse swingv
this->parse_swing_(recv_state);
this->publish_state();
for (uint8_t i = 0; i < HITACHI_AC344_STATE_LENGTH; i++)
remote_state_[i] = recv_state[i];
return true;
}
void HitachiClimate::dump_state_(const char action[], uint8_t state[]) {
for (uint16_t i = 0; i < HITACHI_AC344_STATE_LENGTH - 10; i += 10) {
ESP_LOGV(TAG, "%s: %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X", action, state[i + 0], state[i + 1],
state[i + 2], state[i + 3], state[i + 4], state[i + 5], state[i + 6], state[i + 7], state[i + 8],
state[i + 9]);
}
ESP_LOGV(TAG, "%s: %02X %02X %02X", action, state[40], state[41], state[42]);
}
} // namespace hitachi_ac344
} // namespace esphome

View File

@ -0,0 +1,122 @@
#pragma once
#include "esphome/core/log.h"
#include "esphome/components/climate_ir/climate_ir.h"
namespace esphome {
namespace hitachi_ac344 {
const uint16_t HITACHI_AC344_HDR_MARK = 3300; // ac
const uint16_t HITACHI_AC344_HDR_SPACE = 1700; // ac
const uint16_t HITACHI_AC344_BIT_MARK = 400;
const uint16_t HITACHI_AC344_ONE_SPACE = 1250;
const uint16_t HITACHI_AC344_ZERO_SPACE = 500;
const uint32_t HITACHI_AC344_MIN_GAP = 100000; // just a guess.
const uint16_t HITACHI_AC344_FREQ = 38000; // Hz.
const uint8_t HITACHI_AC344_BUTTON_BYTE = 11;
const uint8_t HITACHI_AC344_BUTTON_POWER = 0x13;
const uint8_t HITACHI_AC344_BUTTON_SLEEP = 0x31;
const uint8_t HITACHI_AC344_BUTTON_MODE = 0x41;
const uint8_t HITACHI_AC344_BUTTON_FAN = 0x42;
const uint8_t HITACHI_AC344_BUTTON_TEMP_DOWN = 0x43;
const uint8_t HITACHI_AC344_BUTTON_TEMP_UP = 0x44;
const uint8_t HITACHI_AC344_BUTTON_SWINGV = 0x81;
const uint8_t HITACHI_AC344_BUTTON_SWINGH = 0x8C;
const uint8_t HITACHI_AC344_BUTTON_MILDEWPROOF = 0xE2;
const uint8_t HITACHI_AC344_TEMP_BYTE = 13;
const uint8_t HITACHI_AC344_TEMP_OFFSET = 2;
const uint8_t HITACHI_AC344_TEMP_SIZE = 6;
const uint8_t HITACHI_AC344_TEMP_MIN = 16; // 16C
const uint8_t HITACHI_AC344_TEMP_MAX = 32; // 32C
const uint8_t HITACHI_AC344_TEMP_FAN = 27; // 27C
const uint8_t HITACHI_AC344_TIMER_BYTE = 15;
const uint8_t HITACHI_AC344_MODE_BYTE = 25;
const uint8_t HITACHI_AC344_MODE_FAN = 1;
const uint8_t HITACHI_AC344_MODE_COOL = 3;
const uint8_t HITACHI_AC344_MODE_DRY = 5;
const uint8_t HITACHI_AC344_MODE_HEAT = 6;
const uint8_t HITACHI_AC344_MODE_AUTO = 7;
const uint8_t HITACHI_AC344_FAN_BYTE = HITACHI_AC344_MODE_BYTE;
const uint8_t HITACHI_AC344_FAN_MIN = 1;
const uint8_t HITACHI_AC344_FAN_LOW = 2;
const uint8_t HITACHI_AC344_FAN_MEDIUM = 3;
const uint8_t HITACHI_AC344_FAN_HIGH = 4;
const uint8_t HITACHI_AC344_FAN_AUTO = 5;
const uint8_t HITACHI_AC344_FAN_MAX = 6;
const uint8_t HITACHI_AC344_FAN_MAX_DRY = 2;
const uint8_t HITACHI_AC344_POWER_BYTE = 27;
const uint8_t HITACHI_AC344_POWER_ON = 0xF1;
const uint8_t HITACHI_AC344_POWER_OFF = 0xE1;
const uint8_t HITACHI_AC344_SWINGH_BYTE = 35;
const uint8_t HITACHI_AC344_SWINGH_OFFSET = 0; // Mask 0b00000xxx
const uint8_t HITACHI_AC344_SWINGH_SIZE = 3; // Mask 0b00000xxx
const uint8_t HITACHI_AC344_SWINGH_AUTO = 0; // 0b000
const uint8_t HITACHI_AC344_SWINGH_RIGHT_MAX = 1; // 0b001
const uint8_t HITACHI_AC344_SWINGH_RIGHT = 2; // 0b010
const uint8_t HITACHI_AC344_SWINGH_MIDDLE = 3; // 0b011
const uint8_t HITACHI_AC344_SWINGH_LEFT = 4; // 0b100
const uint8_t HITACHI_AC344_SWINGH_LEFT_MAX = 5; // 0b101
const uint8_t HITACHI_AC344_SWINGV_BYTE = 37;
const uint8_t HITACHI_AC344_SWINGV_OFFSET = 5; // Mask 0b00x00000
const uint8_t HITACHI_AC344_MILDEWPROOF_BYTE = HITACHI_AC344_SWINGV_BYTE;
const uint8_t HITACHI_AC344_MILDEWPROOF_OFFSET = 2; // Mask 0b00000x00
const uint16_t HITACHI_AC344_STATE_LENGTH = 43;
const uint16_t HITACHI_AC344_BITS = HITACHI_AC344_STATE_LENGTH * 8;
#define GETBIT8(a, b) (a & ((uint8_t) 1 << b))
#define GETBITS8(data, offset, size) (((data) & (((uint8_t) UINT8_MAX >> (8 - (size))) << (offset))) >> (offset))
class HitachiClimate : public climate_ir::ClimateIR {
public:
HitachiClimate()
: climate_ir::ClimateIR(
HITACHI_AC344_TEMP_MIN, HITACHI_AC344_TEMP_MAX, 1.0F, true, true,
std::vector<climate::ClimateFanMode>{climate::CLIMATE_FAN_AUTO, climate::CLIMATE_FAN_LOW,
climate::CLIMATE_FAN_MEDIUM, climate::CLIMATE_FAN_HIGH},
std::vector<climate::ClimateSwingMode>{climate::CLIMATE_SWING_OFF, climate::CLIMATE_SWING_HORIZONTAL}) {}
protected:
uint8_t remote_state_[HITACHI_AC344_STATE_LENGTH]{0x01, 0x10, 0x00, 0x40, 0x00, 0xFF, 0x00, 0xCC, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00,
0x80, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t previous_temp_{27};
// Transmit via IR the state of this climate controller.
void transmit_state() override;
bool get_power_();
void set_power_(bool on);
uint8_t get_mode_();
void set_mode_(uint8_t mode);
void set_temp_(uint8_t celsius, bool set_previous = false);
uint8_t get_fan_();
void set_fan_(uint8_t speed);
void set_swing_v_toggle_(bool on);
bool get_swing_v_toggle_();
void set_swing_v_(bool on);
bool get_swing_v_();
void set_swing_h_(uint8_t position);
uint8_t get_swing_h_();
uint8_t get_button_();
void set_button_(uint8_t button);
// Handle received IR Buffer
bool on_receive(remote_base::RemoteReceiveData data) override;
bool parse_mode_(const uint8_t remote_state[]);
bool parse_temperature_(const uint8_t remote_state[]);
bool parse_fan_(const uint8_t remote_state[]);
bool parse_swing_(const uint8_t remote_state[]);
bool parse_state_frame_(const uint8_t frame[]);
void dump_state_(const char action[], uint8_t remote_state[]);
};
} // namespace hitachi_ac344
} // namespace esphome

View File

@ -1321,6 +1321,8 @@ climate:
name: LG Climate
- platform: toshiba
name: Toshiba Climate
- platform: hitachi_ac344
name: Hitachi Climate
switch:
- platform: gpio