This commit is contained in:
pebblebed-tech 2024-05-02 11:35:22 +02:00 committed by GitHub
commit de9b8acf7c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 616 additions and 0 deletions

View File

@ -124,6 +124,7 @@ esphome/components/esp8266/* @esphome/core
esphome/components/ethernet_info/* @gtjadsonsantos
esphome/components/event/* @nohat
esphome/components/exposure_notifications/* @OttoWinter
esphome/components/external_eeprom/* @pebblebed-tech
esphome/components/ezo/* @ssieb
esphome/components/ezo_pmp/* @carlos-sarmiento
esphome/components/factory_reset/* @anatoly-savchenkov

View File

@ -0,0 +1,52 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import i2c
from esphome.const import CONF_ID
CODEOWNERS = ["@pebblebed-tech"]
DEPENDENCIES = ["i2c"]
MULTI_CONF = True
CONF_EE_MEMORY_TYPE = "ee_memory_type"
CONF_I2C_BUFFER_SIZE = "i2c_buffer_size"
ext_eeprom_component_ns = cg.esphome_ns.namespace("external_eeprom")
ExtEepromComponent = ext_eeprom_component_ns.class_(
"ExtEepromComponent", cg.Component, i2c.I2CDevice
)
EEPROM_TYPES = {
"24XX00": ext_eeprom_component_ns.EEE_24XX00,
"24XX01": ext_eeprom_component_ns.EEE_24XX01,
"24XX02": ext_eeprom_component_ns.EEE_24XX02,
"24XX04": ext_eeprom_component_ns.EEE_24XX04,
"24XX08": ext_eeprom_component_ns.EEE_24XX08,
"24XX16": ext_eeprom_component_ns.EEE_24XX16,
"24XX32": ext_eeprom_component_ns.EEE_24XX32,
"24XX64": ext_eeprom_component_ns.EEE_24XX64,
"24XX128": ext_eeprom_component_ns.EEE_24XX128,
"24XX256": ext_eeprom_component_ns.EEE_24XX256,
"24XX512": ext_eeprom_component_ns.EEE_24XX512,
"24XX1025": ext_eeprom_component_ns.EEE_24XX1025,
"24XX2048": ext_eeprom_component_ns.EEE_24XX2048,
}
CONFIG_SCHEMA = (
cv.Schema(
{
cv.GenerateID(): cv.declare_id(ExtEepromComponent),
cv.Required(CONF_EE_MEMORY_TYPE): cv.one_of(*EEPROM_TYPES, upper=True),
cv.Required(CONF_I2C_BUFFER_SIZE): cv.uint8_t,
}
)
.extend(cv.COMPONENT_SCHEMA)
.extend(i2c.i2c_device_schema(0x57))
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
await i2c.register_i2c_device(var, config)
cg.add(var.set_i2c_buffer_size(config[CONF_I2C_BUFFER_SIZE]))
cg.add(var.set_memory_type(EEPROM_TYPES[config[CONF_EE_MEMORY_TYPE]]))

View File

@ -0,0 +1,445 @@
#include "external_eeprom.h"
namespace esphome {
namespace external_eeprom {
static const char *const TAG = "external_eeprom";
void ExtEepromComponent::setup() {
if (!this->is_connected(this->address_)) {
ESP_LOGE(TAG, "Device on address 0x%x not found!", this->address_);
this->mark_failed();
} else {
ESP_LOGE(TAG, "Memory detected!");
}
}
void ExtEepromComponent::loop() {}
void ExtEepromComponent::dump_config() {
ESP_LOGCONFIG(TAG, "External Eeprom");
LOG_I2C_DEVICE(this);
ESP_LOGCONFIG(TAG, "Device Type = %s", this->device_type_text_.c_str());
ESP_LOGCONFIG(TAG, "Size = %d", this->get_memory_size_());
ESP_LOGCONFIG(TAG, "Page size = %d", this->get_page_size_());
ESP_LOGCONFIG(TAG, "Number of Address Bytes = %d", this->get_address_size_bytes_());
ESP_LOGCONFIG(TAG, "I2C HW buffer size = %d", this->get_i2c_buffer_size());
ESP_LOGCONFIG(TAG, "Page write time = %d", this->get_page_write_time_());
}
/// @brief This checks whether the device is connected and not busy
/// @param Caller can pass in an 0xFF I2C address. This is helpful for larger EEPROMs that have two addresses (see block
/// bit 2).
/// @return an boolean True for connected
bool ExtEepromComponent::is_connected(uint8_t i2c_address) {
i2c::ErrorCode err;
if (i2c_address == 255) // We can't set the default so we use 255 instead
i2c_address = this->address_;
err = this->bus_->write(i2c_address, nullptr, 0, true);
if (err != i2c::ERROR_OK)
ESP_LOGE(TAG, "EEPROM not connected and raise this error %d", err);
return (err == i2c::ERROR_OK);
}
/// @brief Reads a byte from a given location
/// @param memaddr is the location to read
/// @return the byte read from device
uint8_t ExtEepromComponent::read8(uint32_t memaddr) {
uint8_t temp_byte;
this->read(memaddr, &temp_byte, 1);
return temp_byte;
}
/// @brief Reads a 16 bit word from a given location
/// @param memaddr is the location to read
/// @return the word read from the device
uint16_t ExtEepromComponent::read16(uint32_t memaddr) {
uint16_t val;
this->read(memaddr, (uint8_t *) &val, sizeof(uint16_t));
return val;
}
/// @brief Reads a 32 bit word from a given location
/// @param memaddr is the location to read
/// @return the word read from the device
uint32_t ExtEepromComponent::read32(uint32_t memaddr) {
uint32_t val;
this->read(memaddr, (uint8_t *) &val, sizeof(uint32_t));
return val;
}
/// @brief Reads a float from a given location
/// @param memaddr is the location to read
/// @return the float read from the device
float ExtEepromComponent::read_float(uint32_t memaddr) {
float val;
this->read(memaddr, (uint8_t *) &val, sizeof(float));
return val;
}
/// @brief Reads a double from a given location
/// @param memaddr is the location to read
/// @return the double read from the device
double ExtEepromComponent::read_double(uint32_t memaddr) {
double val;
this->read(memaddr, (uint8_t *) &val, sizeof(double));
return val;
}
/// @brief Bulk read from the device
/// @note breaking up read amt into 32 byte chunks (can be overriden with setI2Cbuffer_size)
/// @note Handles a read that straddles the 512kbit barrier
/// @param memaddr is the starting location to read
/// @param buff is the pointer to an array of bytes that will be used to store the data received
/// @param buffer_size is the size of the buffer and also the number of bytes to be read
void ExtEepromComponent::read(uint32_t memaddr, uint8_t *buff, uint16_t buffer_size) {
ESP_LOGVV(TAG, "Read %d bytes from address %d", buffer_size, memaddr);
uint16_t size = buffer_size;
uint8_t *p = buff;
i2c::ErrorCode ret;
while (size >= 1) {
// Limit the amount to read to a page size
uint16_t amt_to_read = size;
if (amt_to_read > this->i2c_buffer_size_) // I2C buffer size limit
amt_to_read = this->i2c_buffer_size_;
// Check if we are dealing with large (>512kbit) EEPROMs
uint8_t i2c_address = this->address_;
if (this->get_memory_size_() > 0xFFFF) {
// Figure out if we are going to cross the barrier with this read
if (memaddr < 0xFFFF) {
if (0xFFFF - memaddr < amt_to_read) // 0xFFFF - 0xFFFA < I2C_buffer_size
amt_to_read = 0xFFFF - memaddr; // Limit the read amt to go right up to edge of barrier
}
// Figure out if we are accessing the lower half or the upper half
if (memaddr > 0xFFFF)
i2c_address |= 0b100; // Set the block bit to 1
}
if (this->get_address_size_bytes_() == 2) {
uint8_t maddr[] = {(uint8_t) (memaddr >> 8), (uint8_t) (memaddr & 0xFF)};
ret = this->bus_->write(i2c_address, maddr, 2, false);
} else {
uint8_t maddr[] = {(uint8_t) (memaddr & 0xFF)};
ret = this->bus_->write(i2c_address, maddr, 1, false);
}
if (ret != i2c::ERROR_OK) {
ESP_LOGE(TAG, "Read raise this error %d on setting address", ret);
}
ESP_LOGVV(TAG, "Read - Done Set address, Ammount to read %d", amt_to_read);
ret = this->bus_->read(i2c_address, p, amt_to_read);
if (ret != i2c::ERROR_OK) {
ESP_LOGE(TAG, "Read raised this error %d on reading data", ret);
}
ESP_LOGVV(TAG, "Done Read");
memaddr += amt_to_read;
p += amt_to_read;
size -= amt_to_read;
}
}
/// @brief Read a std::string from the device
/// @note It write the string with an extra byte containing the size at the memaddr
/// @note It is limited to reading a max length of 254 bytes
/// @param memaddr is the starting location to read
/// @param str_to_read will hold the bytes read from the device on return of the fuction
uint32_t ExtEepromComponent::read_string_from_eeprom(uint32_t memaddr, std::string &str_to_read) {
uint8_t new_str_len = this->read8(memaddr);
uint8_t data[new_str_len + 1];
this->read(memaddr + 1, (uint8_t *) data, new_str_len);
data[new_str_len] = '\0';
str_to_read = (char *) data;
return memaddr + 1 + new_str_len;
}
/// @brief Writes a byte to a given location
/// @note It will check first to see if loccation already has the value to protect write cycles
/// @param memaddr is the location to write
/// @param data_to_write contains the byte to be written
void ExtEepromComponent::write8(uint32_t memaddr, uint8_t data_to_write) {
if (this->read8(memaddr) != data_to_write) { // Update only if data is new
this->write(memaddr, &data_to_write, 1);
}
}
/// @brief Writes a 16 bit word to a given location
/// @note It will check first to see if loccation already has the value to protect write cycles
/// @param memaddr is the location to write
/// @param value contains the word to be written
void ExtEepromComponent::write16(uint32_t memaddr, uint16_t value) {
if (this->read16(memaddr) != value) { // Update only if data is new
uint16_t val = value;
this->write(memaddr, (uint8_t *) &val, sizeof(uint16_t));
}
}
/// @brief Writes a 32 bit word to a given location
/// @note It will check first to see if loccation already has the value to protect write cycles
/// @param memaddr is the location to write
/// @param value contains the word to be written
void ExtEepromComponent::write32(uint32_t memaddr, uint32_t value) {
if (this->read32(memaddr) != value) { // Update only if data is new
uint32_t val = value;
this->write(memaddr, (uint8_t *) &val, sizeof(uint32_t));
}
}
/// @brief Writes a float to a given location
/// @note It will check first to see if loccation already has the value to protect write cycles
/// @param memaddr is the location to write
/// @param value contains the float to be written
void ExtEepromComponent::write_float(uint32_t memaddr, float value) {
if (this->read_float(memaddr) != value) { // Update only if data is new
float val = value;
this->write(memaddr, (uint8_t *) &val, sizeof(float));
}
}
/// @brief Writes a double to a given location
/// @note It will check first to see if loccation already has the value to protect write cycles
/// @param memaddr is the location to write
/// @param value contains the double to be written
void ExtEepromComponent::write_double(uint32_t memaddr, double value) {
if (this->read_double(memaddr) != value) // Update only if data is new
{
double val = value;
this->write(memaddr, (uint8_t *) &val, sizeof(double));
}
}
/// @brief Bulk write to the device
/// @note breaking up read amt into 32 byte chunks (can be overriden with setI2Cbuffer_size)
/// @note Handles a write that straddles the 512kbit barrier
/// @param memaddr is the starting location to write
/// @param data_to_write is the pointer to an array of bytes that will be written
/// @param buffer_size is the size of the buffer and also the number of bytes to be written
void ExtEepromComponent::write(uint32_t memaddr, uint8_t *data_to_write, uint16_t buffer_size) {
ESP_LOGVV(TAG, "Write %d bytes to address %d", buffer_size, memaddr);
uint16_t size = buffer_size;
uint8_t *p = data_to_write;
// Check to make sure write is inside device range
if (memaddr + buffer_size >= this->memory_size_bytes_) {
buffer_size = this->memory_size_bytes_ - memaddr; // if not shorten the write to fit
ESP_LOGE(TAG, "Trying write data beyond device size, Address %d", (memaddr + buffer_size));
}
uint16_t max_write_size = this->memory_page_size_bytes_;
if (max_write_size > this->i2c_buffer_size_)
max_write_size = this->i2c_buffer_size_;
/// Break the buffer into page sized chunks
while (size >= 1) {
/// Limit the amount to write to either the page size or the I2C limit
uint16_t amt_to_write = size;
if (amt_to_write > max_write_size)
amt_to_write = max_write_size;
if (amt_to_write > 1) {
/// Check for crossing of a page line. Writes cannot cross a page line.
uint16_t page_number_1 = memaddr / this->memory_page_size_bytes_;
uint16_t page_number_2 = (memaddr + amt_to_write - 1) / this->memory_page_size_bytes_;
if (page_number_2 > page_number_1) {
amt_to_write = (page_number_2 * this->memory_page_size_bytes_) -
memaddr; /// Limit the write amt to go right up to edge of page barrier
}
}
/// Check if we are dealing with large (>512kbit) EEPROMs
uint8_t i2c_address = this->address_;
if (this->get_memory_size_() > 0xFFFF) {
/// Figure out if we are going to cross the barrier with this write
if (memaddr < 0xFFFF) {
if (0xFFFF - memaddr < amt_to_write) /// 0xFFFF - 0xFFFA < I2C_buffer_size
amt_to_write = 0xFFFF - memaddr; /// Limit the write amt to go right up to edge of barrier
}
/// Figure out if we are accessing the lower half or the upper half
if (memaddr > 0xFFFF)
i2c_address |= 0b100; /// Set the block bit to 1
}
ESP_LOGVV(TAG, "Write block %d bytes to address %d", amt_to_write, memaddr);
this->write_block_(i2c_address, memaddr, p, amt_to_write);
memaddr += amt_to_write;
p += amt_to_write;
size -= amt_to_write;
ESP_LOGVV(TAG, "After write size %d amt %d add %d", size, amt_to_write, memaddr);
delay(this->memory_page_write_time_ms_); /// Delay the amount of time to record a page
}
}
/// @brief Write a std::string to the device
/// @note It writes the string with an extra byte containing the size at the memaddr eg address 0
/// @note it is limited to writing a max length of the string of 254 bytes and will trim extra bytes
/// @param memaddr is the starting location to write
/// @param str_to_write contains the std::string to be wriiten
uint32_t ExtEepromComponent::write_string_to_eeprom(uint32_t memaddr, std::string &str_to_write) {
if (str_to_write.length() > 254) {
ESP_LOGE(TAG, "String to long. Limit is 254 chars");
str_to_write.resize(254);
}
uint8_t len = str_to_write.length();
const char *p = str_to_write.c_str();
this->write8(memaddr, len);
this->write(memaddr + 1, (uint8_t *) p, len);
return memaddr + 1 + len;
}
void ExtEepromComponent::dump_eeprom(uint32_t start_addr, uint16_t word_count) {
std::vector<uint16_t> words;
uint16_t address;
uint16_t data;
std::string res;
char adbuf[8];
char buf[5];
size_t len;
address = start_addr;
while (address < (word_count + start_addr)) {
for (size_t i = address; i < (address + 16); i += 2) {
this->read_object(i, data);
words.push_back(data);
}
sprintf(adbuf, "%04X : ", address);
res = adbuf;
len = words.size();
for (size_t u = 0; u < len; u++) {
if (u > 0) {
res += " ";
}
sprintf(buf, "%04X", words[u]);
res += buf;
}
ESP_LOGD(TAG, "%s", res.c_str());
words.clear();
address = address + 16;
}
}
/// @brief Erase the entire device
/// @note **** to be used carefully, as there is no recovery ****
/// @param value_to_write optional value to be written to all locations defaults to 0x00
void ExtEepromComponent::erase(uint8_t value_to_write) {
uint8_t temp_buffer[this->memory_page_size_bytes_];
for (uint32_t x = 0; x < this->memory_page_size_bytes_; x++)
temp_buffer[x] = value_to_write;
for (uint32_t addr = 0; addr < this->get_memory_size_(); addr += this->memory_page_size_bytes_)
this->write(addr, temp_buffer, this->memory_page_size_bytes_);
}
void ExtEepromComponent::set_memory_type(EEEDeviceType device_type) {
device_type_ = device_type;
// Set settings based on known memory types
switch (device_type_) {
default:
// Unknown type number
break;
case EEE_24XX00:
this->device_type_text_ = "24XX00";
this->set_device_config_(16, 1, 1, 5);
break;
case EEE_24XX01:
this->device_type_text_ = "24XX01";
this->set_device_config_(128, 1, 8, 5); // 128
break;
case EEE_24XX02:
this->device_type_text_ = "24XX02";
this->set_device_config_(256, 1, 8, 5); // 256
break;
case EEE_24XX04:
this->device_type_text_ = "24XX04";
this->set_device_config_(512, 1, 16, 5); // 512
break;
case EEE_24XX08:
this->device_type_text_ = "24XX08";
this->set_device_config_(1024, 1, 16, 5); // 1024
break;
case EEE_24XX16:
this->device_type_text_ = "24XX16";
this->set_device_config_(2048, 1, 16, 1); // 2048
break;
case EEE_24XX32:
this->device_type_text_ = "24XX32";
this->set_device_config_(4096, 2, 32, 5); // 4096
break;
case EEE_24XX64:
this->device_type_text_ = "24XX64";
this->set_device_config_(8192, 2, 32, 5); // 8192
break;
case EEE_24XX128:
this->device_type_text_ = "24XX128";
this->set_device_config_(16384, 2, 64, 5); // 16384
break;
case EEE_24XX256:
this->device_type_text_ = "24XX256";
this->set_device_config_(32768, 2, 64, 5); // 32768
break;
case EEE_24XX512:
this->device_type_text_ = "24XX512";
this->set_device_config_(65536, 2, 64, 5); // 65536
break;
case EEE_24XX1025:
this->device_type_text_ = "24XX1025";
this->set_device_config_(128000, 2, 128, 5); // 128000
break;
case EEE_24XX2048:
this->device_type_text_ = "24XX2048";
this->set_device_config_(262144, 2, 256, 5); // 262144
break;
}
}
void ExtEepromComponent::set_device_config_(uint32_t mem_size, uint8_t address_bytes, uint16_t page_size,
uint8_t write_time_ms) {
this->set_memory_size_(mem_size);
this->set_address_size_bytes_(address_bytes);
this->set_page_size_(page_size);
this->set_page_write_time_(write_time_ms);
}
/// @brief Sets the hw I2C buffer size -2, as 2 bytes are needed for control & addr
/// @param buffer size in bytes, (ESP devices has a 128 I2C buffer so it is set to 126)
void ExtEepromComponent::set_i2c_buffer_size(uint8_t i2c_buffer_size) { this->i2c_buffer_size_ = i2c_buffer_size - 2; }
/// @brief Gets the hw I2C buffer size -2, as 2 bytes are needed for control & addr
/// @return buffer size in bytes
uint8_t ExtEepromComponent::get_i2c_buffer_size() { return this->i2c_buffer_size_; }
// private functions
void ExtEepromComponent::write_block_(uint8_t deviceaddr, uint32_t memaddr, const uint8_t *obj, uint8_t size) {
i2c::WriteBuffer buff[2];
i2c::ErrorCode ret;
// Check if the device has two address bytes
if (this->get_address_size_bytes_() == 2) {
uint8_t maddr[] = {(uint8_t) (memaddr >> 8), (uint8_t) (memaddr & 0xFF)};
buff[0].data = maddr;
buff[0].len = 2;
buff[1].data = obj;
buff[1].len = size;
ret = this->bus_->writev(this->address_, buff, 2, true);
} else {
uint8_t maddr[] = {(uint8_t) (memaddr & 0xFF)};
buff[0].data = maddr;
buff[0].len = 1;
buff[1].data = obj;
buff[1].len = size;
ret = this->bus_->writev(this->address_, buff, 2, true);
}
if (ret != i2c::ERROR_OK) {
ESP_LOGE(TAG, "Write raise this error %d on writing data to this address %d", ret, memaddr);
}
}
// @brief Sets the size of the device in bytes
/// @param memSize contains the size of the device
void ExtEepromComponent::set_memory_size_(uint32_t mem_size) { this->memory_size_bytes_ = mem_size; }
/// @brief Gets the user specified size of the device in bytes
/// @return size in bytes
uint32_t ExtEepromComponent::get_memory_size_() { return this->memory_size_bytes_; }
/// @brief Sets the page size of the device in bytes
/// @param page_size contains the size of the device pages
void ExtEepromComponent::set_page_size_(uint16_t page_size) { this->memory_page_size_bytes_ = page_size; }
/// @brief Gets the user specified size of the device pages in bytes
/// @return Page size in bytes
uint16_t ExtEepromComponent::get_page_size_() { return this->memory_page_size_bytes_; }
/// @brief Sets the page write for the device in ms
/// @param write_time_ms contains the time to write a page of the device
void ExtEepromComponent::set_page_write_time_(uint8_t write_time_ms) {
this->memory_page_write_time_ms_ = write_time_ms;
}
/// @brief Gets the user specified write time for a device page in ms
/// @return page write time in ms
uint8_t ExtEepromComponent::get_page_write_time_() { return this->memory_page_write_time_ms_; }
/// @brief Set address_bytes for the device
/// @param address_bytes contains the number of bytes the device uses for address
void ExtEepromComponent::set_address_size_bytes_(uint8_t address_size_bytes) {
this->address_size_bytes_ = address_size_bytes;
}
/// @brief Gets the number of bytes used for the address
/// @return size in bytes
uint8_t ExtEepromComponent::get_address_size_bytes_() { return this->address_size_bytes_; }
} // namespace external_eeprom
} // namespace esphome

View File

@ -0,0 +1,97 @@
#pragma once
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
#include "esphome/core/component.h"
#include "esphome/components/i2c/i2c.h"
namespace esphome {
namespace external_eeprom {
/// @brief This Class provides the methods to read and write data from an 24 LC/AT XX devices such as 24LC32. See
/// https://ww1.microchip.com/downloads/en/devicedoc/doc0336.pdf
enum EEEDeviceType {
EEE_24XX00,
EEE_24XX01,
EEE_24XX02,
EEE_24XX04,
EEE_24XX08,
EEE_24XX16,
EEE_24XX32,
EEE_24XX64,
EEE_24XX128,
EEE_24XX256,
EEE_24XX512,
EEE_24XX1025,
EEE_24XX2048
};
class ExtEepromComponent : public i2c::I2CDevice, public Component {
public:
void setup() override;
void loop() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::BUS; }
bool is_connected(uint8_t i2c_address = 255);
uint8_t read8(uint32_t memaddr); // Read a single byte from address memaddr
uint16_t read16(uint32_t memaddr);
uint32_t read32(uint32_t memaddr);
float read_float(uint32_t memaddr);
double read_double(uint32_t memaddr);
void read(uint32_t memaddr, uint8_t *buff,
uint16_t buffer_size); // Read a buffer of buffersize (bytes) from adress memaddr
uint32_t read_string_from_eeprom(uint32_t memaddr,
std::string &str_to_read); // Read a Std::string from adress memaddr
void write8(uint32_t memaddr, uint8_t data_to_write); // Write a single byte to address memaddr
void write16(uint32_t memaddr, uint16_t value);
void write32(uint32_t memaddr, uint32_t value);
void write_float(uint32_t memaddr, float value);
void write_double(uint32_t memaddr, double value);
void write(uint32_t memaddr, uint8_t *data_to_write,
uint16_t buffer_size); // Write a buffer of buffersize (bytes) to adress memaddr
uint32_t write_string_to_eeprom(uint32_t memaddr, std::string &str_to_write); // Write a string to adress memaddr
void dump_eeprom(uint32_t start_addr, uint16_t word_count); // Display the contents of EEPROM in hex to the debug log
void erase(uint8_t value_to_write = 0x00); // Erase the entire memory. Optional: write a given byte to each spot.
// Getters and Setters for component config
void set_memory_type(EEEDeviceType device_type);
void set_i2c_buffer_size(uint8_t i2c_buffer_size); // Set the size of hw buffer -2 for control & addr
uint8_t get_i2c_buffer_size(); // Get the size of hw buffer -2 for control & addr
// Functionality to 'get' and 'put' objects to and from EEPROM.
template<typename T> T &read_object(uint32_t idx, T &t) {
uint8_t *ptr = (uint8_t *) &t;
read(idx, ptr, sizeof(T)); // Address, data, sizeOfData
return t;
}
template<typename T>
T &write_object(uint32_t idx, T &t) // Address, data
{
uint8_t *ptr = (uint8_t *) &t;
write(idx, ptr, sizeof(T)); // Address, data, sizeOfData
return t;
}
private:
void write_block_(uint8_t deviceaddr, uint32_t memaddr, const uint8_t *obj, uint8_t size);
void set_device_config_(uint32_t mem_size, uint8_t address_bytes, uint16_t page_size, uint8_t write_time_ms);
void set_memory_size_(uint32_t mem_size); // Set the size of memory in bytes
uint32_t get_memory_size_(); // Return size of memory in bytes
void set_page_size_(uint16_t page_size); // Set the size of the page we can write a page at a time
uint16_t get_page_size_(); // Get the size of the page we can read a page at a time
void set_address_size_bytes_(uint8_t address_size_bytes); // Set the number of bytes to use for device address
uint8_t get_address_size_bytes_(); // Get the number of bytes to use for device address
void set_page_write_time_(uint8_t write_time_ms); // Set the number of ms required per page write
uint8_t get_page_write_time_(); // Get the number of ms required per page write
uint32_t memory_size_bytes_{0};
uint16_t memory_page_size_bytes_{0};
uint8_t address_size_bytes_{0};
uint8_t memory_page_write_time_ms_{0};
uint8_t i2c_buffer_size_{126};
EEEDeviceType device_type_{EEE_24XX32};
std::string device_type_text_{""};
};
} // namespace external_eeprom
} // namespace esphome

View File

@ -0,0 +1,11 @@
i2c:
- id: i2c_external_eeprom
sda: GPIO21
scl: GPIO22
external_eeprom:
- id: ext_eeprom_component_1
address: 0x57
ee_memory_type: 24XX32
i2c_buffer_size: 128
i2c_id: i2c_external_eeprom

View File

@ -0,0 +1,10 @@
i2c:
- id: i2c_external_eeprom
sda: D2
scl: D1
external_eeprom:
- id: ext_eeprom_component_1
address: 0x57
ee_memory_type: 24XX32
i2c_buffer_size: 128