import inspect import math # pylint: disable=unused-import, wrong-import-order from typing import Any, Generator, List, Optional, Tuple, Type, Union, Dict, Callable # noqa from esphome.core import ( # noqa CORE, HexInt, ID, Lambda, TimePeriod, TimePeriodMicroseconds, TimePeriodMilliseconds, TimePeriodMinutes, TimePeriodSeconds, coroutine, Library, Define, EnumValue) from esphome.helpers import cpp_string_escape, indent_all_but_first_and_last from esphome.py_compat import integer_types, string_types, text_type from esphome.util import OrderedDict class Expression(object): def __str__(self): raise NotImplementedError SafeExpType = Union[Expression, bool, str, text_type, int, float, TimePeriod, Type[bool], Type[int], Type[float], List[Any]] class RawExpression(Expression): def __init__(self, text): # type: (Union[str, unicode]) -> None super(RawExpression, self).__init__() self.text = text def __str__(self): return str(self.text) # pylint: disable=redefined-builtin class AssignmentExpression(Expression): def __init__(self, type, modifier, name, rhs, obj): super(AssignmentExpression, self).__init__() self.type = type self.modifier = modifier self.name = name self.rhs = safe_exp(rhs) self.obj = obj def __str__(self): if self.type is None: return u"{} = {}".format(self.name, self.rhs) return u"{} {}{} = {}".format(self.type, self.modifier, self.name, self.rhs) class VariableDeclarationExpression(Expression): def __init__(self, type, modifier, name): super(VariableDeclarationExpression, self).__init__() self.type = type self.modifier = modifier self.name = name def __str__(self): return u"{} {}{}".format(self.type, self.modifier, self.name) class ExpressionList(Expression): def __init__(self, *args): super(ExpressionList, self).__init__() # Remove every None on end args = list(args) while args and args[-1] is None: args.pop() self.args = [safe_exp(arg) for arg in args] def __str__(self): text = u", ".join(text_type(x) for x in self.args) return indent_all_but_first_and_last(text) def __iter__(self): return iter(self.args) class TemplateArguments(Expression): def __init__(self, *args): # type: (*SafeExpType) -> None super(TemplateArguments, self).__init__() self.args = ExpressionList(*args) def __str__(self): return u'<{}>'.format(self.args) def __iter__(self): return iter(self.args) class CallExpression(Expression): def __init__(self, base, *args): # type: (Expression, *SafeExpType) -> None super(CallExpression, self).__init__() self.base = base if args and isinstance(args[0], TemplateArguments): self.template_args = args[0] args = args[1:] else: self.template_args = None self.args = ExpressionList(*args) def __str__(self): if self.template_args is not None: return u'{}{}({})'.format(self.base, self.template_args, self.args) return u'{}({})'.format(self.base, self.args) class StructInitializer(Expression): def __init__(self, base, *args): # type: (Expression, *Tuple[str, SafeExpType]) -> None super(StructInitializer, self).__init__() self.base = base if not isinstance(args, OrderedDict): args = OrderedDict(args) self.args = OrderedDict() for key, value in args.items(): if value is None: continue exp = safe_exp(value) self.args[key] = exp def __str__(self): cpp = u'{}{{\n'.format(self.base) for key, value in self.args.items(): cpp += u' .{} = {},\n'.format(key, value) cpp += u'}' return cpp class ArrayInitializer(Expression): def __init__(self, *args, **kwargs): # type: (*Any, **Any) -> None super(ArrayInitializer, self).__init__() self.multiline = kwargs.get('multiline', False) self.args = [] for arg in args: if arg is None: continue exp = safe_exp(arg) self.args.append(exp) def __str__(self): if not self.args: return u'{}' if self.multiline: cpp = u'{\n' for arg in self.args: cpp += u' {},\n'.format(arg) cpp += u'}' else: cpp = u'{' + u', '.join(str(arg) for arg in self.args) + u'}' return cpp class ParameterExpression(Expression): def __init__(self, type, id): super(ParameterExpression, self).__init__() self.type = safe_exp(type) self.id = id def __str__(self): return u"{} {}".format(self.type, self.id) class ParameterListExpression(Expression): def __init__(self, *parameters): super(ParameterListExpression, self).__init__() self.parameters = [] for parameter in parameters: if not isinstance(parameter, ParameterExpression): parameter = ParameterExpression(*parameter) self.parameters.append(parameter) def __str__(self): return u", ".join(text_type(x) for x in self.parameters) class LambdaExpression(Expression): def __init__(self, parts, parameters, capture='=', return_type=None): super(LambdaExpression, self).__init__() self.parts = parts if not isinstance(parameters, ParameterListExpression): parameters = ParameterListExpression(*parameters) self.parameters = parameters self.capture = capture self.return_type = safe_exp(return_type) if return_type is not None else None def __str__(self): cpp = u'[{}]({})'.format(self.capture, self.parameters) if self.return_type is not None: cpp += u' -> {}'.format(self.return_type) cpp += u' {{\n{}\n}}'.format(self.content) return indent_all_but_first_and_last(cpp) @property def content(self): return u''.join(text_type(part) for part in self.parts) class Literal(Expression): def __str__(self): raise NotImplementedError class StringLiteral(Literal): def __init__(self, string): # type: (Union[str, unicode]) -> None super(StringLiteral, self).__init__() self.string = string def __str__(self): return u'{}'.format(cpp_string_escape(self.string)) class IntLiteral(Literal): def __init__(self, i): # type: (Union[int, long]) -> None super(IntLiteral, self).__init__() self.i = i def __str__(self): if self.i > 4294967295: return u'{}ULL'.format(self.i) if self.i > 2147483647: return u'{}UL'.format(self.i) if self.i < -2147483648: return u'{}LL'.format(self.i) return text_type(self.i) class BoolLiteral(Literal): def __init__(self, binary): # type: (bool) -> None super(BoolLiteral, self).__init__() self.binary = binary def __str__(self): return u"true" if self.binary else u"false" class HexIntLiteral(Literal): def __init__(self, i): # type: (int) -> None super(HexIntLiteral, self).__init__() self.i = HexInt(i) def __str__(self): return str(self.i) class FloatLiteral(Literal): def __init__(self, value): # type: (float) -> None super(FloatLiteral, self).__init__() self.float_ = value def __str__(self): if math.isnan(self.float_): return u"NAN" return u"{}f".format(self.float_) # pylint: disable=bad-continuation def safe_exp( obj # type: Union[Expression, bool, str, unicode, int, long, float, TimePeriod, list] ): # type: (...) -> Expression """Try to convert obj to an expression by automatically converting native python types to expressions/literals. """ from esphome.cpp_types import bool_, float_, int32 if isinstance(obj, Expression): return obj if isinstance(obj, EnumValue): return safe_exp(obj.enum_value) if isinstance(obj, bool): return BoolLiteral(obj) if isinstance(obj, string_types): return StringLiteral(obj) if isinstance(obj, HexInt): return HexIntLiteral(obj) if isinstance(obj, integer_types): return IntLiteral(obj) if isinstance(obj, float): return FloatLiteral(obj) if isinstance(obj, TimePeriodMicroseconds): return IntLiteral(int(obj.total_microseconds)) if isinstance(obj, TimePeriodMilliseconds): return IntLiteral(int(obj.total_milliseconds)) if isinstance(obj, TimePeriodSeconds): return IntLiteral(int(obj.total_seconds)) if isinstance(obj, TimePeriodMinutes): return IntLiteral(int(obj.total_minutes)) if isinstance(obj, (tuple, list)): return ArrayInitializer(*[safe_exp(o) for o in obj]) if obj is bool: return bool_ if obj is int: return int32 if obj is float: return float_ if isinstance(obj, ID): raise ValueError(u"Object {} is an ID. Did you forget to register the variable?" u"".format(obj)) if inspect.isgenerator(obj): raise ValueError(u"Object {} is a coroutine. Did you forget to await the expression with " u"'yield'?".format(obj)) raise ValueError(u"Object is not an expression", obj) class Statement(object): def __init__(self): pass def __str__(self): raise NotImplementedError class RawStatement(Statement): def __init__(self, text): super(RawStatement, self).__init__() self.text = text def __str__(self): return self.text class ExpressionStatement(Statement): def __init__(self, expression): super(ExpressionStatement, self).__init__() self.expression = safe_exp(expression) def __str__(self): return u"{};".format(self.expression) class LineComment(Statement): def __init__(self, value): # type: (unicode) -> None super(LineComment, self).__init__() self._value = value def __str__(self): parts = self._value.split(u'\n') parts = [u'// {}'.format(x) for x in parts] return u'\n'.join(parts) class ProgmemAssignmentExpression(AssignmentExpression): def __init__(self, type, name, rhs, obj): super(ProgmemAssignmentExpression, self).__init__( type, '', name, rhs, obj ) def __str__(self): type_ = self.type return u"static const {} {}[] PROGMEM = {}".format(type_, self.name, self.rhs) def progmem_array(id, rhs): rhs = safe_exp(rhs) obj = MockObj(id, u'.') assignment = ProgmemAssignmentExpression(id.type, id, rhs, obj) CORE.add(assignment) CORE.register_variable(id, obj) return obj def statement(expression): # type: (Union[Expression, Statement]) -> Statement if isinstance(expression, Statement): return expression return ExpressionStatement(expression) def variable(id, # type: ID rhs, # type: SafeExpType type=None # type: MockObj ): # type: (...) -> MockObj """Declare a new variable (not pointer type) in the code generation. :param id: The ID used to declare the variable. :param rhs: The expression to place on the right hand side of the assignment. :param type: Manually define a type for the variable, only use this when it's not possible to do so during config validation phase (for example because of template arguments). :returns The new variable as a MockObj. """ assert isinstance(id, ID) rhs = safe_exp(rhs) obj = MockObj(id, u'.') if type is not None: id.type = type assignment = AssignmentExpression(id.type, '', id, rhs, obj) CORE.add(assignment) CORE.register_variable(id, obj) return obj def Pvariable(id, # type: ID rhs, # type: SafeExpType type=None # type: MockObj ): # type: (...) -> MockObj """Declare a new pointer variable in the code generation. :param id: The ID used to declare the variable. :param rhs: The expression to place on the right hand side of the assignment. :param type: Manually define a type for the variable, only use this when it's not possible to do so during config validation phase (for example because of template arguments). :returns The new variable as a MockObj. """ rhs = safe_exp(rhs) obj = MockObj(id, u'->') if type is not None: id.type = type decl = VariableDeclarationExpression(id.type, '*', id) CORE.add_global(decl) assignment = AssignmentExpression(None, None, id, rhs, obj) CORE.add(assignment) CORE.register_variable(id, obj) return obj def new_Pvariable(id, # type: ID *args # type: *SafeExpType ): """Declare a new pointer variable in the code generation by calling it's constructor with the given arguments. :param id: The ID used to declare the variable (also specifies the type). :param args: The values to pass to the constructor. :returns The new variable as a MockObj. """ if args and isinstance(args[0], TemplateArguments): id = id.copy() id.type = id.type.template(args[0]) args = args[1:] rhs = id.type.new(*args) return Pvariable(id, rhs) def add(expression, # type: Union[Expression, Statement] ): # type: (...) -> None """Add an expression to the codegen section. After this is called, the given given expression will show up in the setup() function after this has been called. """ CORE.add(expression) def add_global(expression, # type: Union[SafeExpType, Statement] ): # type: (...) -> None """Add an expression to the codegen global storage (above setup()).""" CORE.add_global(expression) def add_library(name, # type: str version # type: Optional[str] ): # type: (...) -> None """Add a library to the codegen library storage. :param name: The name of the library (for example 'AsyncTCP') :param version: The version of the library, may be None. """ CORE.add_library(Library(name, version)) def add_build_flag(build_flag, # type: str ): # type: (...) -> None """Add a global build flag to the compiler flags.""" CORE.add_build_flag(build_flag) def add_define(name, # type: str value=None, # type: Optional[SafeExpType] ): # type: (...) -> None """Add a global define to the auto-generated defines.h file. Optionally define a value to set this define to. """ if value is None: CORE.add_define(Define(name)) else: CORE.add_define(Define(name, safe_exp(value))) @coroutine def get_variable(id): # type: (ID) -> Generator[MockObj] """ Wait for the given ID to be defined in the code generation and return it as a MockObj. This is a coroutine, you need to await it with a 'yield' expression! :param id: The ID to retrieve :return: The variable as a MockObj. """ var = yield CORE.get_variable(id) yield var @coroutine def get_variable_with_full_id(id): # type: (ID) -> Generator[ID, MockObj] """ Wait for the given ID to be defined in the code generation and return it as a MockObj. This is a coroutine, you need to await it with a 'yield' expression! :param id: The ID to retrieve :return: The variable as a MockObj. """ full_id, var = yield CORE.get_variable_with_full_id(id) yield full_id, var @coroutine def process_lambda(value, # type: Lambda parameters, # type: List[Tuple[SafeExpType, str]] capture='=', # type: str return_type=None # type: Optional[SafeExpType] ): # type: (...) -> Generator[LambdaExpression] """Process the given lambda value into a LambdaExpression. This is a coroutine because lambdas can depend on other IDs, you need to await it with 'yield'! :param value: The lambda to process. :param parameters: The parameters to pass to the Lambda, list of tuples :param capture: The capture expression for the lambda, usually ''. :param return_type: The return type of the lambda. :return: The generated lambda expression. """ from esphome.components.globals import GlobalsComponent if value is None: yield return parts = value.parts[:] for i, id in enumerate(value.requires_ids): full_id, var = yield CORE.get_variable_with_full_id(id) if full_id is not None and isinstance(full_id.type, MockObjClass) and \ full_id.type.inherits_from(GlobalsComponent): parts[i * 3 + 1] = var.value() continue if parts[i * 3 + 2] == '.': parts[i * 3 + 1] = var._ else: parts[i * 3 + 1] = var parts[i * 3 + 2] = '' yield LambdaExpression(parts, parameters, capture, return_type) def is_template(value): """Return if value is a lambda expression.""" return isinstance(value, Lambda) @coroutine def templatable(value, # type: Any args, # type: List[Tuple[SafeExpType, str]] output_type, # type: Optional[SafeExpType], to_exp=None # type: Optional[Any] ): """Generate code for a templatable config option. If `value` is a templated value, the lambda expression is returned. Otherwise the value is returned as-is (optionally process with to_exp). :param value: The value to process. :param args: The arguments for the lambda expression. :param output_type: The output type of the lambda expression. :param to_exp: An optional callable to use for converting non-templated values. :return: The potentially templated value. """ if is_template(value): lambda_ = yield process_lambda(value, args, return_type=output_type) yield lambda_ else: if to_exp is None: yield value elif isinstance(to_exp, dict): yield to_exp[value] else: yield to_exp(value) class MockObj(Expression): """A general expression that can be used to represent any value. Mostly consists of magic methods that allow ESPHome's codegen syntax. """ def __init__(self, base, op=u'.'): self.base = base self.op = op super(MockObj, self).__init__() def __getattr__(self, attr): # type: (str) -> MockObj next_op = u'.' if attr.startswith(u'P') and self.op not in ['::', '']: attr = attr[1:] next_op = u'->' if attr.startswith(u'_'): attr = attr[1:] return MockObj(u'{}{}{}'.format(self.base, self.op, attr), next_op) def __call__(self, *args): # type: (SafeExpType) -> MockObj call = CallExpression(self.base, *args) return MockObj(call, self.op) def __str__(self): # type: () -> unicode return text_type(self.base) def __repr__(self): return u'MockObj<{}>'.format(text_type(self.base)) @property def _(self): # type: () -> MockObj return MockObj(u'{}{}'.format(self.base, self.op)) @property def new(self): # type: () -> MockObj return MockObj(u'new {}'.format(self.base), u'->') def template(self, *args): # type: (*SafeExpType) -> MockObj if len(args) != 1 or not isinstance(args[0], TemplateArguments): args = TemplateArguments(*args) else: args = args[0] return MockObj(u'{}{}'.format(self.base, args)) def namespace(self, name): # type: (str) -> MockObj return MockObj(u'{}{}'.format(self._, name), u'::') def class_(self, name, *parents): # type: (str, *MockObjClass) -> MockObjClass op = '' if self.op == '' else '::' return MockObjClass(u'{}{}{}'.format(self.base, op, name), u'.', parents=parents) def struct(self, name): # type: (str) -> MockObjClass return self.class_(name) def enum(self, name, is_class=False): # type: (str, bool) -> MockObj return MockObjEnum(enum=name, is_class=is_class, base=self.base, op=self.op) def operator(self, name): # type: (str) -> MockObj if name == 'ref': return MockObj(u'{} &'.format(self.base), u'') if name == 'ptr': return MockObj(u'{} *'.format(self.base), u'') if name == "const": return MockObj(u'const {}'.format(self.base), u'') raise NotImplementedError @property def using(self): # type: () -> MockObj assert self.op == '::' return MockObj(u'using namespace {}'.format(self.base)) def __getitem__(self, item): # type: (Union[str, Expression]) -> MockObj next_op = u'.' if isinstance(item, str) and item.startswith(u'P'): item = item[1:] next_op = u'->' return MockObj(u'{}[{}]'.format(self.base, item), next_op) class MockObjEnum(MockObj): def __init__(self, *args, **kwargs): self._enum = kwargs.pop('enum') self._is_class = kwargs.pop('is_class') base = kwargs.pop('base') if self._is_class: base = base + '::' + self._enum kwargs['op'] = '::' kwargs['base'] = base MockObj.__init__(self, *args, **kwargs) def __str__(self): # type: () -> unicode if self._is_class: return super(MockObjEnum, self).__str__() return u'{}{}{}'.format(self.base, self.op, self._enum) def __repr__(self): return u'MockObj<{}>'.format(text_type(self.base)) class MockObjClass(MockObj): def __init__(self, *args, **kwargs): parens = kwargs.pop('parents') MockObj.__init__(self, *args, **kwargs) self._parents = [] for paren in parens: if not isinstance(paren, MockObjClass): raise ValueError self._parents.append(paren) # pylint: disable=protected-access self._parents += paren._parents def inherits_from(self, other): # type: (MockObjClass) -> bool if self == other: return True for parent in self._parents: if parent == other: return True return False def template(self, *args): # type: (*SafeExpType) -> MockObjClass if len(args) != 1 or not isinstance(args[0], TemplateArguments): args = TemplateArguments(*args) else: args = args[0] new_parents = self._parents[:] new_parents.append(self) return MockObjClass(u'{}{}'.format(self.base, args), parents=new_parents) def __repr__(self): return u'MockObjClass<{}, parents={}>'.format(text_type(self.base), self._parents)