#include "ledc_output.h" #include "esphome/core/log.h" #ifdef USE_ESP32 #ifdef USE_ARDUINO #include #endif #include #define CLOCK_FREQUENCY 80e6f #ifdef USE_ARDUINO #ifdef SOC_LEDC_SUPPORT_XTAL_CLOCK #undef CLOCK_FREQUENCY // starting with ESP32 Arduino 2.0.2, the 40MHz crystal is used as clock by default if supported #define CLOCK_FREQUENCY 40e6f #endif #else #ifdef SOC_LEDC_SUPPORT_APB_CLOCK #define DEFAULT_CLK LEDC_USE_APB_CLK #else #define DEFAULT_CLK LEDC_AUTO_CLK #endif #endif static const uint8_t SETUP_ATTEMPT_COUNT_MAX = 5; namespace esphome { namespace ledc { static const char *const TAG = "ledc.output"; static const int MAX_RES_BITS = LEDC_TIMER_BIT_MAX - 1; #ifdef USE_ESP_IDF #if SOC_LEDC_SUPPORT_HS_MODE // Only ESP32 has LEDC_HIGH_SPEED_MODE inline ledc_mode_t get_speed_mode(uint8_t channel) { return channel < 8 ? LEDC_HIGH_SPEED_MODE : LEDC_LOW_SPEED_MODE; } #else // S2, C3, S3 only support LEDC_LOW_SPEED_MODE // See // https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/api-reference/peripherals/ledc.html#functionality-overview inline ledc_mode_t get_speed_mode(uint8_t) { return LEDC_LOW_SPEED_MODE; } #endif #endif float ledc_max_frequency_for_bit_depth(uint8_t bit_depth) { return CLOCK_FREQUENCY / float(1 << bit_depth); } float ledc_min_frequency_for_bit_depth(uint8_t bit_depth, bool low_frequency) { const float max_div_num = ((1 << MAX_RES_BITS) - 1) / (low_frequency ? 32.0f : 256.0f); return CLOCK_FREQUENCY / (max_div_num * float(1 << bit_depth)); } optional ledc_bit_depth_for_frequency(float frequency) { ESP_LOGD(TAG, "Calculating resolution bit-depth for frequency %f", frequency); for (int i = MAX_RES_BITS; i >= 1; i--) { const float min_frequency = ledc_min_frequency_for_bit_depth(i, (frequency < 100)); const float max_frequency = ledc_max_frequency_for_bit_depth(i); if (min_frequency <= frequency && frequency <= max_frequency) { ESP_LOGD(TAG, "Resolution calculated as %d", i); return i; } } return {}; } #ifdef USE_ESP_IDF esp_err_t configure_timer_frequency(ledc_mode_t speed_mode, ledc_timer_t timer_num, ledc_channel_t chan_num, uint8_t channel, uint8_t &bit_depth, float frequency) { bit_depth = *ledc_bit_depth_for_frequency(frequency); if (bit_depth < 1) { ESP_LOGE(TAG, "Frequency %f can't be achieved with any bit depth", frequency); } ledc_timer_config_t timer_conf{}; timer_conf.speed_mode = speed_mode; timer_conf.duty_resolution = static_cast(bit_depth); timer_conf.timer_num = timer_num; timer_conf.freq_hz = (uint32_t) frequency; timer_conf.clk_cfg = DEFAULT_CLK; // Configure the time with fallback in case of error int attempt_count_max = SETUP_ATTEMPT_COUNT_MAX; esp_err_t init_result = ESP_FAIL; while (attempt_count_max > 0 && init_result != ESP_OK) { init_result = ledc_timer_config(&timer_conf); if (init_result != ESP_OK) { ESP_LOGW(TAG, "Unable to initialize timer with frequency %.1f and bit depth of %u", frequency, bit_depth); // try again with a lower bit depth timer_conf.duty_resolution = static_cast(--bit_depth); } attempt_count_max--; } return init_result; } #endif #ifdef USE_ESP_IDF constexpr int ledc_angle_to_htop(float angle, uint8_t bit_depth) { return static_cast(angle * ((1U << bit_depth) - 1) / 360.); } #endif // USE_ESP_IDF void LEDCOutput::write_state(float state) { if (!initialized_) { ESP_LOGW(TAG, "LEDC output hasn't been initialized yet!"); return; } if (this->pin_->is_inverted()) state = 1.0f - state; this->duty_ = state; const uint32_t max_duty = (uint32_t(1) << this->bit_depth_) - 1; const float duty_rounded = roundf(state * max_duty); auto duty = static_cast(duty_rounded); #ifdef USE_ARDUINO ESP_LOGV(TAG, "Setting duty: %u on channel %u", duty, this->channel_); ledcWrite(this->channel_, duty); #endif #ifdef USE_ESP_IDF auto speed_mode = get_speed_mode(channel_); auto chan_num = static_cast(channel_ % 8); int hpoint = ledc_angle_to_htop(this->phase_angle_, this->bit_depth_); ledc_set_duty_with_hpoint(speed_mode, chan_num, duty, hpoint); ledc_update_duty(speed_mode, chan_num); #endif } void LEDCOutput::setup() { ESP_LOGV(TAG, "Entering setup..."); #ifdef USE_ARDUINO this->update_frequency(this->frequency_); this->turn_off(); // Attach pin after setting default value ledcAttachPin(this->pin_->get_pin(), this->channel_); #endif #ifdef USE_ESP_IDF auto speed_mode = get_speed_mode(channel_); auto timer_num = static_cast((channel_ % 8) / 2); auto chan_num = static_cast(channel_ % 8); esp_err_t timer_init_result = configure_timer_frequency(speed_mode, timer_num, chan_num, this->channel_, this->bit_depth_, this->frequency_); if (timer_init_result != ESP_OK) { ESP_LOGE(TAG, "Frequency %f can't be achieved with computed bit depth %u", this->frequency_, this->bit_depth_); this->status_set_error(); return; } int hpoint = ledc_angle_to_htop(this->phase_angle_, this->bit_depth_); ESP_LOGV(TAG, "Configured frequency %f with a bit depth of %u bits", this->frequency_, this->bit_depth_); ESP_LOGV(TAG, "Angle of %.1f° results in hpoint %u", this->phase_angle_, hpoint); ledc_channel_config_t chan_conf{}; chan_conf.gpio_num = pin_->get_pin(); chan_conf.speed_mode = speed_mode; chan_conf.channel = chan_num; chan_conf.intr_type = LEDC_INTR_DISABLE; chan_conf.timer_sel = timer_num; chan_conf.duty = inverted_ == pin_->is_inverted() ? 0 : (1U << bit_depth_); chan_conf.hpoint = hpoint; ledc_channel_config(&chan_conf); initialized_ = true; this->status_clear_error(); #endif } void LEDCOutput::dump_config() { ESP_LOGCONFIG(TAG, "LEDC Output:"); LOG_PIN(" Pin ", this->pin_); ESP_LOGCONFIG(TAG, " LEDC Channel: %u", this->channel_); ESP_LOGCONFIG(TAG, " PWM Frequency: %.1f Hz", this->frequency_); ESP_LOGCONFIG(TAG, " Phase angle: %.1f°", this->phase_angle_); ESP_LOGCONFIG(TAG, " Bit depth: %u", this->bit_depth_); ESP_LOGV(TAG, " Max frequency for bit depth: %f", ledc_max_frequency_for_bit_depth(this->bit_depth_)); ESP_LOGV(TAG, " Min frequency for bit depth: %f", ledc_min_frequency_for_bit_depth(this->bit_depth_, (this->frequency_ < 100))); ESP_LOGV(TAG, " Max frequency for bit depth-1: %f", ledc_max_frequency_for_bit_depth(this->bit_depth_ - 1)); ESP_LOGV(TAG, " Min frequency for bit depth-1: %f", ledc_min_frequency_for_bit_depth(this->bit_depth_ - 1, (this->frequency_ < 100))); ESP_LOGV(TAG, " Max frequency for bit depth+1: %f", ledc_max_frequency_for_bit_depth(this->bit_depth_ + 1)); ESP_LOGV(TAG, " Min frequency for bit depth+1: %f", ledc_min_frequency_for_bit_depth(this->bit_depth_ + 1, (this->frequency_ < 100))); ESP_LOGV(TAG, " Max res bits: %d", MAX_RES_BITS); ESP_LOGV(TAG, " Clock frequency: %f", CLOCK_FREQUENCY); } void LEDCOutput::update_frequency(float frequency) { auto bit_depth_opt = ledc_bit_depth_for_frequency(frequency); if (!bit_depth_opt.has_value()) { ESP_LOGE(TAG, "Frequency %f can't be achieved with any bit depth", this->frequency_); this->status_set_error(); } this->bit_depth_ = bit_depth_opt.value_or(8); this->frequency_ = frequency; #ifdef USE_ARDUINO ESP_LOGV(TAG, "Using Arduino API - Trying to define channel, frequency and bit depth..."); u_int32_t configured_frequency = 0; // Configure LEDC channel, frequency and bit depth with fallback int attempt_count_max = SETUP_ATTEMPT_COUNT_MAX; while (attempt_count_max > 0 && configured_frequency == 0) { ESP_LOGV(TAG, "Trying initialize channel %u with frequency %.1f and bit depth of %u...", this->channel_, this->frequency_, this->bit_depth_); configured_frequency = ledcSetup(this->channel_, frequency, this->bit_depth_); if (configured_frequency != 0) { initialized_ = true; this->status_clear_error(); ESP_LOGV(TAG, "Configured frequency: %u with bit depth: %u", configured_frequency, this->bit_depth_); } else { ESP_LOGW(TAG, "Unable to initialize channel %u with frequency %.1f and bit depth of %u", this->channel_, this->frequency_, this->bit_depth_); // try again with a lower bit depth this->bit_depth_--; } attempt_count_max--; } if (configured_frequency == 0) { ESP_LOGE(TAG, "Permanently failed to initialize channel %u with frequency %.1f and bit depth of %u", this->channel_, this->frequency_, this->bit_depth_); this->status_set_error(); return; } #endif // USE_ARDUINO #ifdef USE_ESP_IDF if (!initialized_) { ESP_LOGW(TAG, "LEDC output hasn't been initialized yet!"); return; } auto speed_mode = get_speed_mode(channel_); auto timer_num = static_cast((channel_ % 8) / 2); auto chan_num = static_cast(channel_ % 8); esp_err_t timer_init_result = configure_timer_frequency(speed_mode, timer_num, chan_num, this->channel_, this->bit_depth_, this->frequency_); if (timer_init_result != ESP_OK) { ESP_LOGE(TAG, "Frequency %f can't be achieved with computed bit depth %u", this->frequency_, this->bit_depth_); this->status_set_error(); return; } this->status_clear_error(); #endif // re-apply duty this->write_state(this->duty_); } uint8_t next_ledc_channel = 0; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables) } // namespace ledc } // namespace esphome #endif