esphome/esphome/components/bmp581/bmp581.cpp

597 lines
20 KiB
C++

/*
* Adds support for Bosch's BMP581 high accuracy pressure and temperature sensor
* - Component structure based on ESPHome's BMP3XX component (as of March, 2023)
* - Implementation is easier as the sensor itself automatically compensates pressure for the temperature
* - Temperature and pressure data is converted via simple divison operations in this component
* - IIR filter level can independently be applied to temperature and pressure measurements
* - Bosch's BMP5-Sensor-API was consulted to verify that sensor configuration is done correctly
* - Copyright (c) 2022 Bosch Sensortec Gmbh, SPDX-License-Identifier: BSD-3-Clause
* - This component uses forced power mode only so measurements are synchronized by the host
* - All datasheet page references refer to Bosch Document Number BST-BMP581-DS004-04 (revision number 1.4)
*/
#include "bmp581.h"
#include "esphome/core/log.h"
#include "esphome/core/hal.h"
namespace esphome {
namespace bmp581 {
static const char *const TAG = "bmp581";
static const LogString *oversampling_to_str(Oversampling oversampling) {
switch (oversampling) {
case Oversampling::OVERSAMPLING_NONE:
return LOG_STR("None");
case Oversampling::OVERSAMPLING_X2:
return LOG_STR("2x");
case Oversampling::OVERSAMPLING_X4:
return LOG_STR("4x");
case Oversampling::OVERSAMPLING_X8:
return LOG_STR("8x");
case Oversampling::OVERSAMPLING_X16:
return LOG_STR("16x");
case Oversampling::OVERSAMPLING_X32:
return LOG_STR("32x");
case Oversampling::OVERSAMPLING_X64:
return LOG_STR("64x");
case Oversampling::OVERSAMPLING_X128:
return LOG_STR("128x");
default:
return LOG_STR("");
}
}
static const LogString *iir_filter_to_str(IIRFilter filter) {
switch (filter) {
case IIRFilter::IIR_FILTER_OFF:
return LOG_STR("OFF");
case IIRFilter::IIR_FILTER_2:
return LOG_STR("2x");
case IIRFilter::IIR_FILTER_4:
return LOG_STR("4x");
case IIRFilter::IIR_FILTER_8:
return LOG_STR("8x");
case IIRFilter::IIR_FILTER_16:
return LOG_STR("16x");
case IIRFilter::IIR_FILTER_32:
return LOG_STR("32x");
case IIRFilter::IIR_FILTER_64:
return LOG_STR("64x");
case IIRFilter::IIR_FILTER_128:
return LOG_STR("128x");
default:
return LOG_STR("");
}
}
void BMP581Component::dump_config() {
ESP_LOGCONFIG(TAG, "BMP581:");
switch (this->error_code_) {
case NONE:
break;
case ERROR_COMMUNICATION_FAILED:
ESP_LOGE(TAG, " Communication with BMP581 failed!");
break;
case ERROR_WRONG_CHIP_ID:
ESP_LOGE(TAG, " BMP581 has wrong chip ID - please verify you are using a BMP 581");
break;
case ERROR_SENSOR_RESET:
ESP_LOGE(TAG, " BMP581 failed to reset");
break;
case ERROR_SENSOR_STATUS:
ESP_LOGE(TAG, " BMP581 sensor status failed, there were NVM problems");
break;
case ERROR_PRIME_IIR_FAILED:
ESP_LOGE(TAG, " BMP581's IIR Filter failed to prime with an initial measurement");
break;
default:
ESP_LOGE(TAG, " BMP581 error code %d", (int) this->error_code_);
break;
}
LOG_I2C_DEVICE(this);
LOG_UPDATE_INTERVAL(this);
ESP_LOGCONFIG(TAG, " Measurement conversion time: %ums", this->conversion_time_);
if (this->temperature_sensor_) {
LOG_SENSOR(" ", "Temperature", this->temperature_sensor_);
ESP_LOGCONFIG(TAG, " IIR Filter: %s", LOG_STR_ARG(iir_filter_to_str(this->iir_temperature_level_)));
ESP_LOGCONFIG(TAG, " Oversampling: %s", LOG_STR_ARG(oversampling_to_str(this->temperature_oversampling_)));
}
if (this->pressure_sensor_) {
LOG_SENSOR(" ", "Pressure", this->pressure_sensor_);
ESP_LOGCONFIG(TAG, " IIR Filter: %s", LOG_STR_ARG(iir_filter_to_str(this->iir_pressure_level_)));
ESP_LOGCONFIG(TAG, " Oversampling: %s", LOG_STR_ARG(oversampling_to_str(this->pressure_oversampling_)));
}
}
void BMP581Component::setup() {
/*
* Setup goes through several stages, which follows the post-power-up procedure (page 18 of datasheet) and then sets
* configured options
* 1) Soft reboot
* 2) Verify ASIC chip ID matches BMP581
* 3) Verify sensor status (check if NVM is okay)
* 4) Enable data ready interrupt
* 5) Write oversampling settings and set internal configuration values
* 6) Configure and prime IIR Filter(s), if enabled
*/
this->error_code_ = NONE;
ESP_LOGCONFIG(TAG, "Setting up BMP581...");
////////////////////
// 1) Soft reboot //
////////////////////
// Power-On-Reboot bit is asserted if sensor successfully reset
if (!this->reset_()) {
ESP_LOGE(TAG, "BMP581 failed to reset");
this->error_code_ = ERROR_SENSOR_RESET;
this->mark_failed();
return;
}
///////////////////////////////////////////
// 2) Verify ASIC chip ID matches BMP581 //
///////////////////////////////////////////
uint8_t chip_id;
// read chip id from sensor
if (!this->read_byte(BMP581_CHIP_ID, &chip_id)) {
ESP_LOGE(TAG, "Failed to read chip id");
this->error_code_ = ERROR_COMMUNICATION_FAILED;
this->mark_failed();
return;
}
// verify id
if (chip_id != BMP581_ASIC_ID) {
ESP_LOGE(TAG, "Unknown chip ID, is this a BMP581?");
this->error_code_ = ERROR_WRONG_CHIP_ID;
this->mark_failed();
return;
}
////////////////////////////////////////////////////
// 3) Verify sensor status (check if NVM is okay) //
////////////////////////////////////////////////////
if (!this->read_byte(BMP581_STATUS, &this->status_.reg)) {
ESP_LOGE(TAG, "Failed to read status register");
this->error_code_ = ERROR_COMMUNICATION_FAILED;
this->mark_failed();
return;
}
// verify status_nvm_rdy bit (it is asserted if boot was successful)
if (!(this->status_.bit.status_nvm_rdy)) {
ESP_LOGE(TAG, "NVM not ready after boot");
this->error_code_ = ERROR_SENSOR_STATUS;
this->mark_failed();
return;
}
// verify status_nvm_err bit (it is asserted if an error is detected)
if (this->status_.bit.status_nvm_err) {
ESP_LOGE(TAG, "NVM error detected on boot");
this->error_code_ = ERROR_SENSOR_STATUS;
this->mark_failed();
return;
}
////////////////////////////////////
// 4) Enable data ready interrupt //
////////////////////////////////////
// enable the data ready interrupt source
if (!this->write_interrupt_source_settings_(true)) {
ESP_LOGE(TAG, "Failed to write interrupt source register");
this->error_code_ = ERROR_COMMUNICATION_FAILED;
this->mark_failed();
return;
}
//////////////////////////////////////////////////////////////////////////
// 5) Write oversampling settings and set internal configuration values //
//////////////////////////////////////////////////////////////////////////
// configure pressure readings, if sensor is defined
// otherwise, disable pressure oversampling
if (this->pressure_sensor_) {
this->osr_config_.bit.press_en = true;
} else {
this->pressure_oversampling_ = OVERSAMPLING_NONE;
}
// write oversampling settings
if (!this->write_oversampling_settings_(this->temperature_oversampling_, this->pressure_oversampling_)) {
ESP_LOGE(TAG, "Failed to write oversampling register");
this->error_code_ = ERROR_COMMUNICATION_FAILED;
this->mark_failed();
return;
}
// set output data rate to 4 Hz=0x19 (page 65 of datasheet)
// - ?shouldn't? matter as this component only uses FORCED_MODE - datasheet is ambiguous
// - If in NORMAL_MODE or NONSTOP_MODE, then this would still allow deep standby to save power
// - will be written to BMP581 at next requested measurement
this->odr_config_.bit.odr = 0x19;
///////////////////////////////////////////////////////
/// 6) Configure and prime IIR Filter(s), if enabled //
///////////////////////////////////////////////////////
if ((this->iir_temperature_level_ != IIR_FILTER_OFF) || (this->iir_pressure_level_ != IIR_FILTER_OFF)) {
if (!this->write_iir_settings_(this->iir_temperature_level_, this->iir_pressure_level_)) {
ESP_LOGE(TAG, "Failed to write IIR configuration registers");
this->error_code_ = ERROR_COMMUNICATION_FAILED;
this->mark_failed();
return;
}
if (!this->prime_iir_filter_()) {
ESP_LOGE(TAG, "Failed to prime the IIR filter with an intiial measurement");
this->error_code_ = ERROR_PRIME_IIR_FAILED;
this->mark_failed();
return;
}
}
}
void BMP581Component::update() {
/*
* Each update goes through several stages
* 0) Verify either a temperature or pressure sensor is defined before proceeding
* 1) Request a measurement
* 2) Wait for measurement to finish (based on oversampling rates)
* 3) Read data registers for temperature and pressure, if applicable
* 4) Publish measurements to sensor(s), if applicable
*/
////////////////////////////////////////////////////////////////////////////////////
// 0) Verify either a temperature or pressure sensor is defined before proceeding //
////////////////////////////////////////////////////////////////////////////////////
if ((!this->temperature_sensor_) && (!this->pressure_sensor_)) {
return;
}
//////////////////////////////
// 1) Request a measurement //
//////////////////////////////
ESP_LOGVV(TAG, "Requesting a measurement from sensor");
if (!this->start_measurement_()) {
ESP_LOGW(TAG, "Failed to request forced measurement of sensor");
this->status_set_warning();
return;
}
//////////////////////////////////////////////////////////////////////
// 2) Wait for measurement to finish (based on oversampling rates) //
//////////////////////////////////////////////////////////////////////
ESP_LOGVV(TAG, "Measurement is expected to take %d ms to complete", this->conversion_time_);
this->set_timeout("measurement", this->conversion_time_, [this]() {
float temperature = 0.0;
float pressure = 0.0;
////////////////////////////////////////////////////////////////////////
// 3) Read data registers for temperature and pressure, if applicable //
////////////////////////////////////////////////////////////////////////
if (this->pressure_sensor_) {
if (!this->read_temperature_and_pressure_(temperature, pressure)) {
ESP_LOGW(TAG, "Failed to read temperature and pressure measurements, skipping update");
this->status_set_warning();
return;
}
} else {
if (!this->read_temperature_(temperature)) {
ESP_LOGW(TAG, "Failed to read temperature measurement, skipping update");
this->status_set_warning();
return;
}
}
/////////////////////////////////////////////////////////
// 4) Publish measurements to sensor(s), if applicable //
/////////////////////////////////////////////////////////
if (this->temperature_sensor_) {
this->temperature_sensor_->publish_state(temperature);
}
if (this->pressure_sensor_) {
this->pressure_sensor_->publish_state(pressure);
}
this->status_clear_warning();
});
}
bool BMP581Component::check_data_readiness_() {
// - verifies component is not internally in standby mode
// - reads interrupt status register
// - checks if data ready bit is asserted
// - If true, then internally sets component to standby mode if in forced mode
// - returns data readiness state
if (this->odr_config_.bit.pwr_mode == STANDBY_MODE) {
ESP_LOGD(TAG, "Data is not ready, sensor is in standby mode");
return false;
}
uint8_t status;
if (!this->read_byte(BMP581_INT_STATUS, &status)) {
ESP_LOGE(TAG, "Failed to read interrupt status register");
return false;
}
this->int_status_.reg = status;
if (this->int_status_.bit.drdy_data_reg) {
// If in forced mode, then set internal record of the power mode to STANDBY_MODE
// - sensor automatically returns to standby mode after completing a forced measurement
if (this->odr_config_.bit.pwr_mode == FORCED_MODE) {
this->odr_config_.bit.pwr_mode = STANDBY_MODE;
}
return true;
}
return false;
}
bool BMP581Component::prime_iir_filter_() {
// - temporarily disables oversampling for a fast initial measurement; avoids slowing down ESPHome's startup process
// - enables IIR filter flushing with forced measurements
// - forces a measurement; flushing the IIR filter and priming it with a current value
// - disables IIR filter flushing with forced measurements
// - reverts to internally configured oversampling rates
// - returns success of all register writes/priming
// store current internal oversampling settings to revert to after priming
Oversampling current_temperature_oversampling = (Oversampling) this->osr_config_.bit.osr_t;
Oversampling current_pressure_oversampling = (Oversampling) this->osr_config_.bit.osr_p;
// temporarily disables oversampling for temperature and pressure for a fast priming measurement
if (!this->write_oversampling_settings_(OVERSAMPLING_NONE, OVERSAMPLING_NONE)) {
ESP_LOGE(TAG, "Failed to write oversampling register");
return false;
}
// flush the IIR filter with forced measurements (we will only flush once)
this->dsp_config_.bit.iir_flush_forced_en = true;
if (!this->write_byte(BMP581_DSP, this->dsp_config_.reg)) {
ESP_LOGE(TAG, "Failed to write IIR source register");
return false;
}
// forces an intial measurement
// - this measurements flushes the IIR filter reflecting written DSP settings
// - flushing with this initial reading avoids having the internal previous data aquisition being 0, which
// (I)nfinitely affects future values
if (!this->start_measurement_()) {
ESP_LOGE(TAG, "Failed to request a forced measurement");
return false;
}
// wait for priming measurement to complete
// - with oversampling disabled, the conversion time for a single measurement for pressure and temperature is
// ceilf(1.05*(1.0+1.0)) = 3ms
// - see page 12 of datasheet for details
delay(3);
if (!this->check_data_readiness_()) {
ESP_LOGE(TAG, "IIR priming measurement was not ready");
return false;
}
// disable IIR filter flushings on future forced measurements
this->dsp_config_.bit.iir_flush_forced_en = false;
if (!this->write_byte(BMP581_DSP, this->dsp_config_.reg)) {
ESP_LOGE(TAG, "Failed to write IIR source register");
return false;
}
// revert oversampling rates to original settings
return this->write_oversampling_settings_(current_temperature_oversampling, current_pressure_oversampling);
}
bool BMP581Component::read_temperature_(float &temperature) {
// - verifies data is ready to be read
// - reads in 3 bytes of temperature data
// - returns whether successful, where the the variable parameter contains
// - the measured temperature (in degrees Celsius)
if (!this->check_data_readiness_()) {
ESP_LOGW(TAG, "Data from sensor isn't ready, skipping this update");
this->status_set_warning();
return false;
}
uint8_t data[3];
if (!this->read_bytes(BMP581_MEASUREMENT_DATA, &data[0], 3)) {
ESP_LOGW(TAG, "Failed to read sensor's measurement data");
this->status_set_warning();
return false;
}
// temperature MSB is in data[2], LSB is in data[1], XLSB in data[0]
int32_t raw_temp = (int32_t) data[2] << 16 | (int32_t) data[1] << 8 | (int32_t) data[0];
temperature = (float) (raw_temp / 65536.0); // convert measurement to degrees Celsius (page 22 of datasheet)
return true;
}
bool BMP581Component::read_temperature_and_pressure_(float &temperature, float &pressure) {
// - verifies data is ready to be read
// - reads in 6 bytes of temperature data (3 for temeperature, 3 for pressure)
// - returns whether successful, where the variable parameters contain
// - the measured temperature (in degrees Celsius)
// - the measured pressure (in Pa)
if (!this->check_data_readiness_()) {
ESP_LOGW(TAG, "Data from sensor isn't ready, skipping this update");
this->status_set_warning();
return false;
}
uint8_t data[6];
if (!this->read_bytes(BMP581_MEASUREMENT_DATA, &data[0], 6)) {
ESP_LOGW(TAG, "Failed to read sensor's measurement data");
this->status_set_warning();
return false;
}
// temperature MSB is in data[2], LSB is in data[1], XLSB in data[0]
int32_t raw_temp = (int32_t) data[2] << 16 | (int32_t) data[1] << 8 | (int32_t) data[0];
temperature = (float) (raw_temp / 65536.0); // convert measurement to degrees Celsius (page 22 of datasheet)
// pressure MSB is in data[5], LSB is in data[4], XLSB in data[3]
int32_t raw_press = (int32_t) data[5] << 16 | (int32_t) data[4] << 8 | (int32_t) data[3];
pressure = (float) (raw_press / 64.0); // Divide by 2^6=64 for Pa (page 22 of datasheet)
return true;
}
bool BMP581Component::reset_() {
// - writes reset command to the command register
// - waits for sensor to complete reset
// - returns the Power-On-Reboot interrupt status, which is asserted if successful
// writes reset command to BMP's command register
if (!this->write_byte(BMP581_COMMAND, RESET_COMMAND)) {
ESP_LOGE(TAG, "Failed to write reset command");
return false;
}
// t_{soft_res} = 2ms (page 11 of datasheet); time it takes to enter standby mode
// - round up to 3 ms
delay(3);
// read interrupt status register
if (!this->read_byte(BMP581_INT_STATUS, &this->int_status_.reg)) {
ESP_LOGE(TAG, "Failed to read interrupt status register");
return false;
}
// Power-On-Reboot bit is asserted if sensor successfully reset
return this->int_status_.bit.por;
}
bool BMP581Component::start_measurement_() {
// - only pushes the sensor into FORCED_MODE for a reading if already in STANDBY_MODE
// - returns whether a measurement is in progress or has been initiated
if (this->odr_config_.bit.pwr_mode == STANDBY_MODE) {
return this->write_power_mode_(FORCED_MODE);
} else {
return true;
}
}
bool BMP581Component::write_iir_settings_(IIRFilter temperature_iir, IIRFilter pressure_iir) {
// - ensures data registers store filtered values
// - sets IIR filter levels on sensor
// - matches other default settings on sensor
// - writes configuration to the two relevant registers
// - returns success or failure of write to the registers
// If the temperature/pressure IIR filter is configured, then ensure data registers store the filtered measurement
this->dsp_config_.bit.shdw_sel_iir_t = (temperature_iir != IIR_FILTER_OFF);
this->dsp_config_.bit.shdw_sel_iir_p = (pressure_iir != IIR_FILTER_OFF);
// set temperature and pressure IIR filter level to configured values
this->iir_config_.bit.set_iir_t = temperature_iir;
this->iir_config_.bit.set_iir_p = pressure_iir;
// enable pressure and temperature compensation (page 61 of datasheet)
// - ?only relevant if IIR filter is applied?; the datasheet is ambiguous
// - matches BMP's default setting
this->dsp_config_.bit.comp_pt_en = 0x3;
// BMP581_DSP register and BMP581_DSP_IIR registers are successive
// - allows us to write the IIR configuration with one command to both registers
uint8_t register_data[2] = {this->dsp_config_.reg, this->iir_config_.reg};
return this->write_bytes(BMP581_DSP, register_data, sizeof(register_data));
}
bool BMP581Component::write_interrupt_source_settings_(bool data_ready_enable) {
// - updates component's internal setting
// - returns success or failure of write to interrupt source register
this->int_source_.bit.drdy_data_reg_en = data_ready_enable;
// write interrupt source register
return this->write_byte(BMP581_INT_SOURCE, this->int_source_.reg);
}
bool BMP581Component::write_oversampling_settings_(Oversampling temperature_oversampling,
Oversampling pressure_oversampling) {
// - updates component's internal setting
// - returns success or failure of write to Over-Sampling Rate register
this->osr_config_.bit.osr_t = temperature_oversampling;
this->osr_config_.bit.osr_p = pressure_oversampling;
return this->write_byte(BMP581_OSR, this->osr_config_.reg);
}
bool BMP581Component::write_power_mode_(OperationMode mode) {
// - updates the component's internal power mode
// - returns success or failure of write to Output Data Rate register
this->odr_config_.bit.pwr_mode = mode;
// write odr register
return this->write_byte(BMP581_ODR, this->odr_config_.reg);
}
} // namespace bmp581
} // namespace esphome