esphome/esphome/components/wled/wled_light_effect.cpp

262 lines
5.9 KiB
C++

#include "wled_light_effect.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
namespace esphome {
namespace wled {
// Description of protocols:
// https://github.com/Aircoookie/WLED/wiki/UDP-Realtime-Control
enum Protocol { WLED_NOTIFIER = 0, WARLS = 1, DRGB = 2, DRGBW = 3, DNRGB = 4 };
const int DEFAULT_BLANK_TIME = 1000;
static const char *const TAG = "wled_light_effect";
WLEDLightEffect::WLEDLightEffect(const std::string &name) : AddressableLightEffect(name) {}
void WLEDLightEffect::start() {
AddressableLightEffect::start();
blank_at_ = 0;
}
void WLEDLightEffect::stop() {
AddressableLightEffect::stop();
if (this->socket_) {
this->socket_->close();
this->socket_.reset();
}
}
void WLEDLightEffect::blank_all_leds_(light::AddressableLight &it) {
for (int led = it.size(); led-- > 0;) {
it[led].set(Color::BLACK);
}
it.schedule_show();
}
void WLEDLightEffect::apply(light::AddressableLight &it, const Color &current_color) {
// Init UDP lazily
if (this->socket_ == nullptr) {
this->socket_ = socket::socket_ip(SOCK_DGRAM, IPPROTO_IP);
int enable = 1;
int err = this->socket_->setsockopt(SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int));
if (err != 0) {
ESP_LOGW(TAG, "Socket unable to set reuseaddr: errno %d", err);
// we can still continue
}
err = this->socket_->setblocking(false);
if (err != 0) {
ESP_LOGW(TAG, "Socket unable to set nonblocking mode: errno %d", err);
return;
}
struct sockaddr_storage server;
socklen_t sl = socket::set_sockaddr_any((struct sockaddr *) &server, sizeof(server), this->port_);
if (sl == 0) {
ESP_LOGW(TAG, "Socket unable to set sockaddr: errno %d", errno);
return;
}
err = this->socket_->bind((struct sockaddr *) &server, sizeof(server));
if (err != 0) {
ESP_LOGW(TAG, "Socket unable to bind: errno %d", errno);
return;
}
}
std::vector<uint8_t> payload;
uint8_t buf[1460];
ssize_t len = this->socket_->read(buf, sizeof(buf));
if (len == -1) {
return;
}
payload.resize(len);
memmove(&payload[0], buf, len);
if (!this->parse_frame_(it, &payload[0], payload.size())) {
ESP_LOGD(TAG, "Frame: Invalid (size=%zu, first=0x%02X).", payload.size(), payload[0]);
}
// FIXME: Use roll-over safe arithmetic
if (blank_at_ < millis()) {
blank_all_leds_(it);
blank_at_ = millis() + DEFAULT_BLANK_TIME;
}
}
bool WLEDLightEffect::parse_frame_(light::AddressableLight &it, const uint8_t *payload, uint16_t size) {
// At minimum frame needs to have:
// 1b - protocol
// 1b - timeout
if (size < 2) {
return false;
}
uint8_t protocol = payload[0];
uint8_t timeout = payload[1];
payload += 2;
size -= 2;
switch (protocol) {
case WLED_NOTIFIER:
// Hyperion Port
if (port_ == 19446) {
if (!parse_drgb_frame_(it, payload, size))
return false;
} else {
if (!parse_notifier_frame_(it, payload, size))
return false;
}
break;
case WARLS:
if (!parse_warls_frame_(it, payload, size))
return false;
break;
case DRGB:
if (!parse_drgb_frame_(it, payload, size))
return false;
break;
case DRGBW:
if (!parse_drgbw_frame_(it, payload, size))
return false;
break;
case DNRGB:
if (!parse_dnrgb_frame_(it, payload, size))
return false;
break;
default:
return false;
}
if (timeout == UINT8_MAX) {
blank_at_ = UINT32_MAX;
} else if (timeout > 0) {
blank_at_ = millis() + timeout * 1000;
} else {
blank_at_ = millis() + DEFAULT_BLANK_TIME;
}
it.schedule_show();
return true;
}
bool WLEDLightEffect::parse_notifier_frame_(light::AddressableLight &it, const uint8_t *payload, uint16_t size) {
// Packet needs to be empty
return size == 0;
}
bool WLEDLightEffect::parse_warls_frame_(light::AddressableLight &it, const uint8_t *payload, uint16_t size) {
// packet: index, r, g, b
if ((size % 4) != 0) {
return false;
}
auto count = size / 4;
auto max_leds = it.size();
for (; count > 0; count--, payload += 4) {
uint8_t led = payload[0];
uint8_t r = payload[1];
uint8_t g = payload[2];
uint8_t b = payload[3];
if (led < max_leds) {
it[led].set(Color(r, g, b));
}
}
return true;
}
bool WLEDLightEffect::parse_drgb_frame_(light::AddressableLight &it, const uint8_t *payload, uint16_t size) {
// packet: r, g, b
if ((size % 3) != 0) {
return false;
}
auto count = size / 3;
auto max_leds = it.size();
for (uint16_t led = 0; led < count; ++led, payload += 3) {
uint8_t r = payload[0];
uint8_t g = payload[1];
uint8_t b = payload[2];
if (led < max_leds) {
it[led].set(Color(r, g, b));
}
}
return true;
}
bool WLEDLightEffect::parse_drgbw_frame_(light::AddressableLight &it, const uint8_t *payload, uint16_t size) {
// packet: r, g, b, w
if ((size % 4) != 0) {
return false;
}
auto count = size / 4;
auto max_leds = it.size();
for (uint16_t led = 0; led < count; ++led, payload += 4) {
uint8_t r = payload[0];
uint8_t g = payload[1];
uint8_t b = payload[2];
uint8_t w = payload[3];
if (led < max_leds) {
it[led].set(Color(r, g, b, w));
}
}
return true;
}
bool WLEDLightEffect::parse_dnrgb_frame_(light::AddressableLight &it, const uint8_t *payload, uint16_t size) {
// offset: high, low
if (size < 2) {
return false;
}
uint16_t led = (uint16_t(payload[0]) << 8) + payload[1];
payload += 2;
size -= 2;
// packet: r, g, b
if ((size % 3) != 0) {
return false;
}
auto count = size / 3;
auto max_leds = it.size();
for (; count > 0; count--, payload += 3, led++) {
uint8_t r = payload[0];
uint8_t g = payload[1];
uint8_t b = payload[2];
if (led < max_leds) {
it[led].set(Color(r, g, b));
}
}
return true;
}
} // namespace wled
} // namespace esphome