esphome/esphome/components/ade7953_base/__init__.py

202 lines
7.2 KiB
Python

import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import sensor
from esphome import pins
from esphome.const import (
CONF_IRQ_PIN,
CONF_VOLTAGE,
CONF_FREQUENCY,
DEVICE_CLASS_CURRENT,
DEVICE_CLASS_APPARENT_POWER,
DEVICE_CLASS_POWER,
DEVICE_CLASS_REACTIVE_POWER,
DEVICE_CLASS_POWER_FACTOR,
DEVICE_CLASS_VOLTAGE,
DEVICE_CLASS_FREQUENCY,
STATE_CLASS_MEASUREMENT,
UNIT_VOLT,
UNIT_HERTZ,
UNIT_AMPERE,
UNIT_VOLT_AMPS,
UNIT_WATT,
UNIT_VOLT_AMPS_REACTIVE,
UNIT_PERCENT,
)
CONF_CURRENT_A = "current_a"
CONF_CURRENT_B = "current_b"
CONF_ACTIVE_POWER_A = "active_power_a"
CONF_ACTIVE_POWER_B = "active_power_b"
CONF_APPARENT_POWER_A = "apparent_power_a"
CONF_APPARENT_POWER_B = "apparent_power_b"
CONF_REACTIVE_POWER_A = "reactive_power_a"
CONF_REACTIVE_POWER_B = "reactive_power_b"
CONF_POWER_FACTOR_A = "power_factor_a"
CONF_POWER_FACTOR_B = "power_factor_b"
CONF_VOLTAGE_PGA_GAIN = "voltage_pga_gain"
CONF_CURRENT_PGA_GAIN_A = "current_pga_gain_a"
CONF_CURRENT_PGA_GAIN_B = "current_pga_gain_b"
CONF_VOLTAGE_GAIN = "voltage_gain"
CONF_CURRENT_GAIN_A = "current_gain_a"
CONF_CURRENT_GAIN_B = "current_gain_b"
CONF_ACTIVE_POWER_GAIN_A = "active_power_gain_a"
CONF_ACTIVE_POWER_GAIN_B = "active_power_gain_b"
CONF_USE_ACCUMULATED_ENERGY_REGISTERS = "use_accumulated_energy_registers"
PGA_GAINS = {
"1x": 0b000,
"2x": 0b001,
"4x": 0b010,
"8x": 0b011,
"16x": 0b100,
"22x": 0b101,
}
ade7953_base_ns = cg.esphome_ns.namespace("ade7953_base")
ADE7953 = ade7953_base_ns.class_("ADE7953", cg.PollingComponent)
ADE7953_CONFIG_SCHEMA = cv.Schema(
{
cv.Optional(CONF_IRQ_PIN): pins.internal_gpio_input_pin_schema,
cv.Optional(CONF_VOLTAGE): sensor.sensor_schema(
unit_of_measurement=UNIT_VOLT,
accuracy_decimals=1,
device_class=DEVICE_CLASS_VOLTAGE,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_FREQUENCY): sensor.sensor_schema(
unit_of_measurement=UNIT_HERTZ,
accuracy_decimals=2,
device_class=DEVICE_CLASS_FREQUENCY,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_CURRENT_A): sensor.sensor_schema(
unit_of_measurement=UNIT_AMPERE,
accuracy_decimals=2,
device_class=DEVICE_CLASS_CURRENT,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_CURRENT_B): sensor.sensor_schema(
unit_of_measurement=UNIT_AMPERE,
accuracy_decimals=2,
device_class=DEVICE_CLASS_CURRENT,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_ACTIVE_POWER_A): sensor.sensor_schema(
unit_of_measurement=UNIT_WATT,
accuracy_decimals=1,
device_class=DEVICE_CLASS_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_ACTIVE_POWER_B): sensor.sensor_schema(
unit_of_measurement=UNIT_WATT,
accuracy_decimals=1,
device_class=DEVICE_CLASS_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_APPARENT_POWER_A): sensor.sensor_schema(
unit_of_measurement=UNIT_VOLT_AMPS,
accuracy_decimals=1,
device_class=DEVICE_CLASS_APPARENT_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_APPARENT_POWER_B): sensor.sensor_schema(
unit_of_measurement=UNIT_VOLT_AMPS,
accuracy_decimals=1,
device_class=DEVICE_CLASS_APPARENT_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_REACTIVE_POWER_A): sensor.sensor_schema(
unit_of_measurement=UNIT_VOLT_AMPS_REACTIVE,
accuracy_decimals=1,
device_class=DEVICE_CLASS_REACTIVE_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_REACTIVE_POWER_B): sensor.sensor_schema(
unit_of_measurement=UNIT_VOLT_AMPS_REACTIVE,
accuracy_decimals=1,
device_class=DEVICE_CLASS_REACTIVE_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_POWER_FACTOR_A): sensor.sensor_schema(
unit_of_measurement=UNIT_PERCENT,
accuracy_decimals=2,
device_class=DEVICE_CLASS_POWER_FACTOR,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_POWER_FACTOR_B): sensor.sensor_schema(
unit_of_measurement=UNIT_PERCENT,
accuracy_decimals=2,
device_class=DEVICE_CLASS_POWER_FACTOR,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(
CONF_VOLTAGE_PGA_GAIN,
default="1x",
): cv.one_of(*PGA_GAINS, lower=True),
cv.Optional(
CONF_CURRENT_PGA_GAIN_A,
default="1x",
): cv.one_of(*PGA_GAINS, lower=True),
cv.Optional(
CONF_CURRENT_PGA_GAIN_B,
default="1x",
): cv.one_of(*PGA_GAINS, lower=True),
cv.Optional(CONF_VOLTAGE_GAIN, default=0x400000): cv.hex_int_range(
min=0x100000, max=0x800000
),
cv.Optional(CONF_CURRENT_GAIN_A, default=0x400000): cv.hex_int_range(
min=0x100000, max=0x800000
),
cv.Optional(CONF_CURRENT_GAIN_B, default=0x400000): cv.hex_int_range(
min=0x100000, max=0x800000
),
cv.Optional(CONF_ACTIVE_POWER_GAIN_A, default=0x400000): cv.hex_int_range(
min=0x100000, max=0x800000
),
cv.Optional(CONF_ACTIVE_POWER_GAIN_B, default=0x400000): cv.hex_int_range(
min=0x100000, max=0x800000
),
cv.Optional(CONF_USE_ACCUMULATED_ENERGY_REGISTERS, default=False): cv.boolean,
}
).extend(cv.polling_component_schema("60s"))
async def register_ade7953(var, config):
await cg.register_component(var, config)
if irq_pin_config := config.get(CONF_IRQ_PIN):
irq_pin = await cg.gpio_pin_expression(irq_pin_config)
cg.add(var.set_irq_pin(irq_pin))
cg.add(var.set_pga_v(PGA_GAINS[config.get(CONF_VOLTAGE_PGA_GAIN)]))
cg.add(var.set_pga_ia(PGA_GAINS[config.get(CONF_CURRENT_PGA_GAIN_A)]))
cg.add(var.set_pga_ib(PGA_GAINS[config.get(CONF_CURRENT_PGA_GAIN_B)]))
cg.add(var.set_vgain(config.get(CONF_VOLTAGE_GAIN)))
cg.add(var.set_aigain(config.get(CONF_CURRENT_GAIN_A)))
cg.add(var.set_bigain(config.get(CONF_CURRENT_GAIN_B)))
cg.add(var.set_awgain(config.get(CONF_ACTIVE_POWER_GAIN_A)))
cg.add(var.set_bwgain(config.get(CONF_ACTIVE_POWER_GAIN_B)))
cg.add(
var.set_use_acc_energy_regs(config.get(CONF_USE_ACCUMULATED_ENERGY_REGISTERS))
)
for key in [
CONF_VOLTAGE,
CONF_FREQUENCY,
CONF_CURRENT_A,
CONF_CURRENT_B,
CONF_POWER_FACTOR_A,
CONF_POWER_FACTOR_B,
CONF_APPARENT_POWER_A,
CONF_APPARENT_POWER_B,
CONF_ACTIVE_POWER_A,
CONF_ACTIVE_POWER_B,
CONF_REACTIVE_POWER_A,
CONF_REACTIVE_POWER_B,
]:
if key not in config:
continue
conf = config[key]
sens = await sensor.new_sensor(conf)
cg.add(getattr(var, f"set_{key}_sensor")(sens))