esphome/esphome/components/atm90e32/sensor.py

230 lines
8.7 KiB
Python

import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import sensor, spi
from esphome.const import (
CONF_ID,
CONF_REACTIVE_POWER,
CONF_VOLTAGE,
CONF_CURRENT,
CONF_PHASE_A,
CONF_PHASE_B,
CONF_PHASE_C,
CONF_PHASE_ANGLE,
CONF_POWER,
CONF_POWER_FACTOR,
CONF_APPARENT_POWER,
CONF_FREQUENCY,
CONF_FORWARD_ACTIVE_ENERGY,
CONF_REVERSE_ACTIVE_ENERGY,
DEVICE_CLASS_CURRENT,
DEVICE_CLASS_ENERGY,
DEVICE_CLASS_POWER,
DEVICE_CLASS_POWER_FACTOR,
DEVICE_CLASS_TEMPERATURE,
DEVICE_CLASS_VOLTAGE,
ENTITY_CATEGORY_DIAGNOSTIC,
ICON_LIGHTBULB,
ICON_CURRENT_AC,
STATE_CLASS_MEASUREMENT,
STATE_CLASS_TOTAL_INCREASING,
UNIT_AMPERE,
UNIT_DEGREES,
UNIT_CELSIUS,
UNIT_HERTZ,
UNIT_VOLT,
UNIT_VOLT_AMPS_REACTIVE,
UNIT_WATT,
UNIT_WATT_HOURS,
)
CONF_LINE_FREQUENCY = "line_frequency"
CONF_CHIP_TEMPERATURE = "chip_temperature"
CONF_GAIN_PGA = "gain_pga"
CONF_CURRENT_PHASES = "current_phases"
CONF_GAIN_VOLTAGE = "gain_voltage"
CONF_GAIN_CT = "gain_ct"
CONF_HARMONIC_POWER = "harmonic_power"
CONF_PEAK_CURRENT = "peak_current"
CONF_PEAK_CURRENT_SIGNED = "peak_current_signed"
UNIT_DEG = "degrees"
LINE_FREQS = {
"50HZ": 50,
"60HZ": 60,
}
CURRENT_PHASES = {
"2": 2,
"3": 3,
}
PGA_GAINS = {
"1X": 0x0,
"2X": 0x15,
"4X": 0x2A,
}
atm90e32_ns = cg.esphome_ns.namespace("atm90e32")
ATM90E32Component = atm90e32_ns.class_(
"ATM90E32Component", cg.PollingComponent, spi.SPIDevice
)
ATM90E32_PHASE_SCHEMA = cv.Schema(
{
cv.Optional(CONF_VOLTAGE): sensor.sensor_schema(
unit_of_measurement=UNIT_VOLT,
accuracy_decimals=2,
device_class=DEVICE_CLASS_VOLTAGE,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_CURRENT): sensor.sensor_schema(
unit_of_measurement=UNIT_AMPERE,
accuracy_decimals=2,
device_class=DEVICE_CLASS_CURRENT,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_POWER): sensor.sensor_schema(
unit_of_measurement=UNIT_WATT,
accuracy_decimals=2,
device_class=DEVICE_CLASS_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_REACTIVE_POWER): sensor.sensor_schema(
unit_of_measurement=UNIT_VOLT_AMPS_REACTIVE,
icon=ICON_LIGHTBULB,
accuracy_decimals=2,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_APPARENT_POWER): sensor.sensor_schema(
unit_of_measurement=UNIT_WATT,
accuracy_decimals=2,
device_class=DEVICE_CLASS_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_POWER_FACTOR): sensor.sensor_schema(
accuracy_decimals=2,
device_class=DEVICE_CLASS_POWER_FACTOR,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_FORWARD_ACTIVE_ENERGY): sensor.sensor_schema(
unit_of_measurement=UNIT_WATT_HOURS,
accuracy_decimals=2,
device_class=DEVICE_CLASS_ENERGY,
state_class=STATE_CLASS_TOTAL_INCREASING,
),
cv.Optional(CONF_REVERSE_ACTIVE_ENERGY): sensor.sensor_schema(
unit_of_measurement=UNIT_WATT_HOURS,
accuracy_decimals=2,
device_class=DEVICE_CLASS_ENERGY,
state_class=STATE_CLASS_TOTAL_INCREASING,
),
cv.Optional(CONF_PHASE_ANGLE): sensor.sensor_schema(
unit_of_measurement=UNIT_DEGREES,
accuracy_decimals=2,
device_class=DEVICE_CLASS_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_HARMONIC_POWER): sensor.sensor_schema(
unit_of_measurement=UNIT_WATT,
accuracy_decimals=2,
device_class=DEVICE_CLASS_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_PEAK_CURRENT): sensor.sensor_schema(
unit_of_measurement=UNIT_AMPERE,
accuracy_decimals=2,
device_class=DEVICE_CLASS_CURRENT,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_GAIN_VOLTAGE, default=7305): cv.uint16_t,
cv.Optional(CONF_GAIN_CT, default=27961): cv.uint16_t,
}
)
CONFIG_SCHEMA = (
cv.Schema(
{
cv.GenerateID(): cv.declare_id(ATM90E32Component),
cv.Optional(CONF_PHASE_A): ATM90E32_PHASE_SCHEMA,
cv.Optional(CONF_PHASE_B): ATM90E32_PHASE_SCHEMA,
cv.Optional(CONF_PHASE_C): ATM90E32_PHASE_SCHEMA,
cv.Optional(CONF_FREQUENCY): sensor.sensor_schema(
unit_of_measurement=UNIT_HERTZ,
icon=ICON_CURRENT_AC,
accuracy_decimals=1,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_CHIP_TEMPERATURE): sensor.sensor_schema(
unit_of_measurement=UNIT_CELSIUS,
accuracy_decimals=1,
device_class=DEVICE_CLASS_TEMPERATURE,
state_class=STATE_CLASS_MEASUREMENT,
entity_category=ENTITY_CATEGORY_DIAGNOSTIC,
),
cv.Required(CONF_LINE_FREQUENCY): cv.enum(LINE_FREQS, upper=True),
cv.Optional(CONF_CURRENT_PHASES, default="3"): cv.enum(
CURRENT_PHASES, upper=True
),
cv.Optional(CONF_GAIN_PGA, default="2X"): cv.enum(PGA_GAINS, upper=True),
cv.Optional(CONF_PEAK_CURRENT_SIGNED, default=False): cv.boolean,
}
)
.extend(cv.polling_component_schema("60s"))
.extend(spi.spi_device_schema())
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
await spi.register_spi_device(var, config)
for i, phase in enumerate([CONF_PHASE_A, CONF_PHASE_B, CONF_PHASE_C]):
if phase not in config:
continue
conf = config[phase]
cg.add(var.set_volt_gain(i, conf[CONF_GAIN_VOLTAGE]))
cg.add(var.set_ct_gain(i, conf[CONF_GAIN_CT]))
if voltage_config := conf.get(CONF_VOLTAGE):
sens = await sensor.new_sensor(voltage_config)
cg.add(var.set_voltage_sensor(i, sens))
if current_config := conf.get(CONF_CURRENT):
sens = await sensor.new_sensor(current_config)
cg.add(var.set_current_sensor(i, sens))
if power_config := conf.get(CONF_POWER):
sens = await sensor.new_sensor(power_config)
cg.add(var.set_power_sensor(i, sens))
if reactive_power_config := conf.get(CONF_REACTIVE_POWER):
sens = await sensor.new_sensor(reactive_power_config)
cg.add(var.set_reactive_power_sensor(i, sens))
if apparent_power_config := conf.get(CONF_APPARENT_POWER):
sens = await sensor.new_sensor(apparent_power_config)
cg.add(var.set_apparent_power_sensor(i, sens))
if power_factor_config := conf.get(CONF_POWER_FACTOR):
sens = await sensor.new_sensor(power_factor_config)
cg.add(var.set_power_factor_sensor(i, sens))
if forward_active_energy_config := conf.get(CONF_FORWARD_ACTIVE_ENERGY):
sens = await sensor.new_sensor(forward_active_energy_config)
cg.add(var.set_forward_active_energy_sensor(i, sens))
if reverse_active_energy_config := conf.get(CONF_REVERSE_ACTIVE_ENERGY):
sens = await sensor.new_sensor(reverse_active_energy_config)
cg.add(var.set_reverse_active_energy_sensor(i, sens))
if phase_angle_config := conf.get(CONF_PHASE_ANGLE):
sens = await sensor.new_sensor(phase_angle_config)
cg.add(var.set_phase_angle_sensor(i, sens))
if harmonic_active_power_config := conf.get(CONF_HARMONIC_POWER):
sens = await sensor.new_sensor(harmonic_active_power_config)
cg.add(var.set_harmonic_active_power_sensor(i, sens))
if peak_current_config := conf.get(CONF_PEAK_CURRENT):
sens = await sensor.new_sensor(peak_current_config)
cg.add(var.set_peak_current_sensor(i, sens))
if frequency_config := config.get(CONF_FREQUENCY):
sens = await sensor.new_sensor(frequency_config)
cg.add(var.set_freq_sensor(sens))
if chip_temperature_config := config.get(CONF_CHIP_TEMPERATURE):
sens = await sensor.new_sensor(chip_temperature_config)
cg.add(var.set_chip_temperature_sensor(sens))
cg.add(var.set_line_freq(config[CONF_LINE_FREQUENCY]))
cg.add(var.set_current_phases(config[CONF_CURRENT_PHASES]))
cg.add(var.set_pga_gain(config[CONF_GAIN_PGA]))
cg.add(var.set_peak_current_signed(config[CONF_PEAK_CURRENT_SIGNED]))