esphome/esphome/components/wifi/wifi_component_esp8266.cpp

819 lines
26 KiB
C++

#include "wifi_component.h"
#include "esphome/core/defines.h"
#ifdef USE_ESP8266
#include <user_interface.h>
#include <utility>
#include <algorithm>
#ifdef USE_WIFI_WPA2_EAP
#include <wpa2_enterprise.h>
#endif
extern "C" {
#include "lwip/err.h"
#include "lwip/dns.h"
#include "lwip/dhcp.h"
#include "lwip/init.h" // LWIP_VERSION_
#include "lwip/apps/sntp.h"
#if LWIP_IPV6
#include "lwip/netif.h" // struct netif
#include <AddrList.h>
#endif
#if USE_ARDUINO_VERSION_CODE >= VERSION_CODE(3, 0, 0)
#include "LwipDhcpServer.h"
#define wifi_softap_set_dhcps_lease(lease) dhcpSoftAP.set_dhcps_lease(lease)
#define wifi_softap_set_dhcps_lease_time(time) dhcpSoftAP.set_dhcps_lease_time(time)
#define wifi_softap_set_dhcps_offer_option(offer, mode) dhcpSoftAP.set_dhcps_offer_option(offer, mode)
#endif
}
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
#include "esphome/core/hal.h"
#include "esphome/core/util.h"
#include "esphome/core/application.h"
namespace esphome {
namespace wifi {
static const char *const TAG = "wifi_esp8266";
static bool s_sta_connected = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static bool s_sta_got_ip = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static bool s_sta_connect_not_found = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static bool s_sta_connect_error = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static bool s_sta_connecting = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
bool WiFiComponent::wifi_mode_(optional<bool> sta, optional<bool> ap) {
uint8_t current_mode = wifi_get_opmode();
bool current_sta = current_mode & 0b01;
bool current_ap = current_mode & 0b10;
bool target_sta = sta.value_or(current_sta);
bool target_ap = ap.value_or(current_ap);
if (current_sta == target_sta && current_ap == target_ap)
return true;
if (target_sta && !current_sta) {
ESP_LOGV(TAG, "Enabling STA.");
} else if (!target_sta && current_sta) {
ESP_LOGV(TAG, "Disabling STA.");
// Stop DHCP client when disabling STA
// See https://github.com/esp8266/Arduino/pull/5703
wifi_station_dhcpc_stop();
}
if (target_ap && !current_ap) {
ESP_LOGV(TAG, "Enabling AP.");
} else if (!target_ap && current_ap) {
ESP_LOGV(TAG, "Disabling AP.");
}
ETS_UART_INTR_DISABLE();
uint8_t mode = 0;
if (target_sta)
mode |= 0b01;
if (target_ap)
mode |= 0b10;
bool ret = wifi_set_opmode_current(mode);
ETS_UART_INTR_ENABLE();
if (!ret) {
ESP_LOGW(TAG, "Setting WiFi mode failed!");
}
return ret;
}
bool WiFiComponent::wifi_apply_power_save_() {
sleep_type_t power_save;
switch (this->power_save_) {
case WIFI_POWER_SAVE_LIGHT:
power_save = LIGHT_SLEEP_T;
break;
case WIFI_POWER_SAVE_HIGH:
power_save = MODEM_SLEEP_T;
break;
case WIFI_POWER_SAVE_NONE:
default:
power_save = NONE_SLEEP_T;
break;
}
wifi_fpm_auto_sleep_set_in_null_mode(1);
return wifi_set_sleep_type(power_save);
}
#if LWIP_VERSION_MAJOR != 1
/*
lwip v2 needs to be notified of IP changes, see also
https://github.com/d-a-v/Arduino/blob/0e7d21e17144cfc5f53c016191daca8723e89ee8/libraries/ESP8266WiFi/src/ESP8266WiFiSTA.cpp#L251
*/
#undef netif_set_addr // need to call lwIP-v1.4 netif_set_addr()
extern "C" {
struct netif *eagle_lwip_getif(int netif_index);
void netif_set_addr(struct netif *netif, const ip4_addr_t *ip, const ip4_addr_t *netmask, const ip4_addr_t *gw);
};
#endif
bool WiFiComponent::wifi_sta_ip_config_(optional<ManualIP> manual_ip) {
// enable STA
if (!this->wifi_mode_(true, {}))
return false;
enum dhcp_status dhcp_status = wifi_station_dhcpc_status();
if (!manual_ip.has_value()) {
// lwIP starts the SNTP client if it gets an SNTP server from DHCP. We don't need the time, and more importantly,
// the built-in SNTP client has a memory leak in certain situations. Disable this feature.
// https://github.com/esphome/issues/issues/2299
sntp_servermode_dhcp(false);
// Use DHCP client
if (dhcp_status != DHCP_STARTED) {
bool ret = wifi_station_dhcpc_start();
if (!ret) {
ESP_LOGV(TAG, "Starting DHCP client failed!");
}
return ret;
}
return true;
}
bool ret = true;
#if LWIP_VERSION_MAJOR != 1
// get current->previous IP address
// (check below)
ip_info previp{};
wifi_get_ip_info(STATION_IF, &previp);
#endif
struct ip_info info {};
info.ip = manual_ip->static_ip;
info.gw = manual_ip->gateway;
info.netmask = manual_ip->subnet;
if (dhcp_status == DHCP_STARTED) {
bool dhcp_stop_ret = wifi_station_dhcpc_stop();
if (!dhcp_stop_ret) {
ESP_LOGV(TAG, "Stopping DHCP client failed!");
ret = false;
}
}
bool wifi_set_info_ret = wifi_set_ip_info(STATION_IF, &info);
if (!wifi_set_info_ret) {
ESP_LOGV(TAG, "Setting manual IP info failed!");
ret = false;
}
ip_addr_t dns;
if (manual_ip->dns1.is_set()) {
dns = manual_ip->dns1;
dns_setserver(0, &dns);
}
if (manual_ip->dns2.is_set()) {
dns = manual_ip->dns2;
dns_setserver(1, &dns);
}
#if LWIP_VERSION_MAJOR != 1
// trigger address change by calling lwIP-v1.4 api
// only when ip is already set by other mean (generally dhcp)
if (previp.ip.addr != 0 && previp.ip.addr != info.ip.addr) {
netif_set_addr(eagle_lwip_getif(STATION_IF), reinterpret_cast<const ip4_addr_t *>(&info.ip),
reinterpret_cast<const ip4_addr_t *>(&info.netmask), reinterpret_cast<const ip4_addr_t *>(&info.gw));
}
#endif
return ret;
}
network::IPAddress WiFiComponent::wifi_sta_ip() {
if (!this->has_sta())
return {};
struct ip_info ip {};
wifi_get_ip_info(STATION_IF, &ip);
return network::IPAddress(&ip.ip);
}
bool WiFiComponent::wifi_apply_hostname_() {
const std::string &hostname = App.get_name();
bool ret = wifi_station_set_hostname(const_cast<char *>(hostname.c_str()));
if (!ret) {
ESP_LOGV(TAG, "Setting WiFi Hostname failed!");
}
// inform dhcp server of hostname change using dhcp_renew()
for (netif *intf = netif_list; intf; intf = intf->next) {
// unconditionally update all known interfaces
#if LWIP_VERSION_MAJOR == 1
intf->hostname = (char *) wifi_station_get_hostname();
#else
intf->hostname = wifi_station_get_hostname();
#endif
if (netif_dhcp_data(intf) != nullptr) {
// renew already started DHCP leases
err_t lwipret = dhcp_renew(intf);
if (lwipret != ERR_OK) {
ESP_LOGW(TAG, "wifi_apply_hostname_(%s): lwIP error %d on interface %c%c (index %d)", intf->hostname,
(int) lwipret, intf->name[0], intf->name[1], intf->num);
ret = false;
}
}
}
return ret;
}
bool WiFiComponent::wifi_sta_connect_(const WiFiAP &ap) {
// enable STA
if (!this->wifi_mode_(true, {}))
return false;
this->wifi_disconnect_();
struct station_config conf {};
memset(&conf, 0, sizeof(conf));
strncpy(reinterpret_cast<char *>(conf.ssid), ap.get_ssid().c_str(), sizeof(conf.ssid));
strncpy(reinterpret_cast<char *>(conf.password), ap.get_password().c_str(), sizeof(conf.password));
if (ap.get_bssid().has_value()) {
conf.bssid_set = 1;
memcpy(conf.bssid, ap.get_bssid()->data(), 6);
} else {
conf.bssid_set = 0;
}
#if USE_ARDUINO_VERSION_CODE >= VERSION_CODE(2, 4, 0)
if (ap.get_password().empty()) {
conf.threshold.authmode = AUTH_OPEN;
} else {
// Only allow auth modes with at least WPA
conf.threshold.authmode = AUTH_WPA_PSK;
}
conf.threshold.rssi = -127;
#endif
ETS_UART_INTR_DISABLE();
bool ret = wifi_station_set_config_current(&conf);
ETS_UART_INTR_ENABLE();
if (!ret) {
ESP_LOGV(TAG, "Setting WiFi Station config failed!");
return false;
}
if (!this->wifi_sta_ip_config_(ap.get_manual_ip())) {
return false;
}
// setup enterprise authentication if required
#ifdef USE_WIFI_WPA2_EAP
if (ap.get_eap().has_value()) {
// note: all certificates and keys have to be null terminated. Lengths are appended by +1 to include \0.
EAPAuth eap = ap.get_eap().value();
ret = wifi_station_set_enterprise_identity((uint8_t *) eap.identity.c_str(), eap.identity.length());
if (ret) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_identity failed! %d", ret);
}
int ca_cert_len = strlen(eap.ca_cert);
int client_cert_len = strlen(eap.client_cert);
int client_key_len = strlen(eap.client_key);
if (ca_cert_len) {
ret = wifi_station_set_enterprise_ca_cert((uint8_t *) eap.ca_cert, ca_cert_len + 1);
if (ret) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_ca_cert failed! %d", ret);
}
}
// workout what type of EAP this is
// validation is not required as the config tool has already validated it
if (client_cert_len && client_key_len) {
// if we have certs, this must be EAP-TLS
ret = wifi_station_set_enterprise_cert_key((uint8_t *) eap.client_cert, client_cert_len + 1,
(uint8_t *) eap.client_key, client_key_len + 1,
(uint8_t *) eap.password.c_str(), strlen(eap.password.c_str()));
if (ret) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_cert_key failed! %d", ret);
}
} else {
// in the absence of certs, assume this is username/password based
ret = wifi_station_set_enterprise_username((uint8_t *) eap.username.c_str(), eap.username.length());
if (ret) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_username failed! %d", ret);
}
ret = wifi_station_set_enterprise_password((uint8_t *) eap.password.c_str(), eap.password.length());
if (ret) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_password failed! %d", ret);
}
}
ret = wifi_station_set_wpa2_enterprise_auth(true);
if (ret) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_enable failed! %d", ret);
}
}
#endif // USE_WIFI_WPA2_EAP
this->wifi_apply_hostname_();
// Reset flags, do this _before_ wifi_station_connect as the callback method
// may be called from wifi_station_connect
s_sta_connecting = true;
s_sta_connected = false;
s_sta_got_ip = false;
s_sta_connect_error = false;
s_sta_connect_not_found = false;
ETS_UART_INTR_DISABLE();
ret = wifi_station_connect();
ETS_UART_INTR_ENABLE();
if (!ret) {
ESP_LOGV(TAG, "wifi_station_connect failed!");
return false;
}
#if ENABLE_IPV6
for (bool configured = false; !configured;) {
for (auto addr : addrList) {
ESP_LOGV(TAG, "Address %s", addr.toString().c_str());
if ((configured = !addr.isLocal() && addr.isV6())) {
break;
}
}
delay(500); // NOLINT
}
#endif
if (ap.get_channel().has_value()) {
ret = wifi_set_channel(*ap.get_channel());
if (!ret) {
ESP_LOGV(TAG, "wifi_set_channel failed!");
return false;
}
}
return true;
}
class WiFiMockClass : public ESP8266WiFiGenericClass {
public:
static void _event_callback(void *event) { ESP8266WiFiGenericClass::_eventCallback(event); } // NOLINT
};
const LogString *get_auth_mode_str(uint8_t mode) {
switch (mode) {
case AUTH_OPEN:
return LOG_STR("OPEN");
case AUTH_WEP:
return LOG_STR("WEP");
case AUTH_WPA_PSK:
return LOG_STR("WPA PSK");
case AUTH_WPA2_PSK:
return LOG_STR("WPA2 PSK");
case AUTH_WPA_WPA2_PSK:
return LOG_STR("WPA/WPA2 PSK");
default:
return LOG_STR("UNKNOWN");
}
}
#ifdef ipv4_addr
std::string format_ip_addr(struct ipv4_addr ip) {
char buf[20];
sprintf(buf, "%u.%u.%u.%u", uint8_t(ip.addr >> 0), uint8_t(ip.addr >> 8), uint8_t(ip.addr >> 16),
uint8_t(ip.addr >> 24));
return buf;
}
#else
std::string format_ip_addr(struct ip_addr ip) {
char buf[20];
sprintf(buf, "%u.%u.%u.%u", uint8_t(ip.addr >> 0), uint8_t(ip.addr >> 8), uint8_t(ip.addr >> 16),
uint8_t(ip.addr >> 24));
return buf;
}
#endif
const LogString *get_op_mode_str(uint8_t mode) {
switch (mode) {
case WIFI_OFF:
return LOG_STR("OFF");
case WIFI_STA:
return LOG_STR("STA");
case WIFI_AP:
return LOG_STR("AP");
case WIFI_AP_STA:
return LOG_STR("AP+STA");
default:
return LOG_STR("UNKNOWN");
}
}
const LogString *get_disconnect_reason_str(uint8_t reason) {
/* If this were one big switch statement, GCC would generate a lookup table for it. However, the values of the
* REASON_* constants aren't continuous, and GCC will fill in the gap with the default value -- wasting 4 bytes of RAM
* per entry. As there's ~175 default entries, this wastes 700 bytes of RAM.
*/
if (reason <= REASON_CIPHER_SUITE_REJECTED) { // This must be the last constant with a value <200
switch (reason) {
case REASON_AUTH_EXPIRE:
return LOG_STR("Auth Expired");
case REASON_AUTH_LEAVE:
return LOG_STR("Auth Leave");
case REASON_ASSOC_EXPIRE:
return LOG_STR("Association Expired");
case REASON_ASSOC_TOOMANY:
return LOG_STR("Too Many Associations");
case REASON_NOT_AUTHED:
return LOG_STR("Not Authenticated");
case REASON_NOT_ASSOCED:
return LOG_STR("Not Associated");
case REASON_ASSOC_LEAVE:
return LOG_STR("Association Leave");
case REASON_ASSOC_NOT_AUTHED:
return LOG_STR("Association not Authenticated");
case REASON_DISASSOC_PWRCAP_BAD:
return LOG_STR("Disassociate Power Cap Bad");
case REASON_DISASSOC_SUPCHAN_BAD:
return LOG_STR("Disassociate Supported Channel Bad");
case REASON_IE_INVALID:
return LOG_STR("IE Invalid");
case REASON_MIC_FAILURE:
return LOG_STR("Mic Failure");
case REASON_4WAY_HANDSHAKE_TIMEOUT:
return LOG_STR("4-Way Handshake Timeout");
case REASON_GROUP_KEY_UPDATE_TIMEOUT:
return LOG_STR("Group Key Update Timeout");
case REASON_IE_IN_4WAY_DIFFERS:
return LOG_STR("IE In 4-Way Handshake Differs");
case REASON_GROUP_CIPHER_INVALID:
return LOG_STR("Group Cipher Invalid");
case REASON_PAIRWISE_CIPHER_INVALID:
return LOG_STR("Pairwise Cipher Invalid");
case REASON_AKMP_INVALID:
return LOG_STR("AKMP Invalid");
case REASON_UNSUPP_RSN_IE_VERSION:
return LOG_STR("Unsupported RSN IE version");
case REASON_INVALID_RSN_IE_CAP:
return LOG_STR("Invalid RSN IE Cap");
case REASON_802_1X_AUTH_FAILED:
return LOG_STR("802.1x Authentication Failed");
case REASON_CIPHER_SUITE_REJECTED:
return LOG_STR("Cipher Suite Rejected");
}
}
switch (reason) {
case REASON_BEACON_TIMEOUT:
return LOG_STR("Beacon Timeout");
case REASON_NO_AP_FOUND:
return LOG_STR("AP Not Found");
case REASON_AUTH_FAIL:
return LOG_STR("Authentication Failed");
case REASON_ASSOC_FAIL:
return LOG_STR("Association Failed");
case REASON_HANDSHAKE_TIMEOUT:
return LOG_STR("Handshake Failed");
case REASON_UNSPECIFIED:
default:
return LOG_STR("Unspecified");
}
}
void WiFiComponent::wifi_event_callback(System_Event_t *event) {
switch (event->event) {
case EVENT_STAMODE_CONNECTED: {
auto it = event->event_info.connected;
char buf[33];
memcpy(buf, it.ssid, it.ssid_len);
buf[it.ssid_len] = '\0';
ESP_LOGV(TAG, "Event: Connected ssid='%s' bssid=%s channel=%u", buf, format_mac_addr(it.bssid).c_str(),
it.channel);
s_sta_connected = true;
break;
}
case EVENT_STAMODE_DISCONNECTED: {
auto it = event->event_info.disconnected;
char buf[33];
memcpy(buf, it.ssid, it.ssid_len);
buf[it.ssid_len] = '\0';
if (it.reason == REASON_NO_AP_FOUND) {
ESP_LOGW(TAG, "Event: Disconnected ssid='%s' reason='Probe Request Unsuccessful'", buf);
s_sta_connect_not_found = true;
} else {
ESP_LOGW(TAG, "Event: Disconnected ssid='%s' bssid=" LOG_SECRET("%s") " reason='%s'", buf,
format_mac_addr(it.bssid).c_str(), LOG_STR_ARG(get_disconnect_reason_str(it.reason)));
s_sta_connect_error = true;
}
s_sta_connected = false;
s_sta_connecting = false;
break;
}
case EVENT_STAMODE_AUTHMODE_CHANGE: {
auto it = event->event_info.auth_change;
ESP_LOGV(TAG, "Event: Changed AuthMode old=%s new=%s", LOG_STR_ARG(get_auth_mode_str(it.old_mode)),
LOG_STR_ARG(get_auth_mode_str(it.new_mode)));
// Mitigate CVE-2020-12638
// https://lbsfilm.at/blog/wpa2-authenticationmode-downgrade-in-espressif-microprocessors
if (it.old_mode != AUTH_OPEN && it.new_mode == AUTH_OPEN) {
ESP_LOGW(TAG, "Potential Authmode downgrade detected, disconnecting...");
// we can't call retry_connect() from this context, so disconnect immediately
// and notify main thread with error_from_callback_
wifi_station_disconnect();
global_wifi_component->error_from_callback_ = true;
}
break;
}
case EVENT_STAMODE_GOT_IP: {
auto it = event->event_info.got_ip;
ESP_LOGV(TAG, "Event: Got IP static_ip=%s gateway=%s netmask=%s", format_ip_addr(it.ip).c_str(),
format_ip_addr(it.gw).c_str(), format_ip_addr(it.mask).c_str());
s_sta_got_ip = true;
break;
}
case EVENT_STAMODE_DHCP_TIMEOUT: {
ESP_LOGW(TAG, "Event: Getting IP address timeout");
break;
}
case EVENT_SOFTAPMODE_STACONNECTED: {
auto it = event->event_info.sta_connected;
ESP_LOGV(TAG, "Event: AP client connected MAC=%s aid=%u", format_mac_addr(it.mac).c_str(), it.aid);
break;
}
case EVENT_SOFTAPMODE_STADISCONNECTED: {
auto it = event->event_info.sta_disconnected;
ESP_LOGV(TAG, "Event: AP client disconnected MAC=%s aid=%u", format_mac_addr(it.mac).c_str(), it.aid);
break;
}
case EVENT_SOFTAPMODE_PROBEREQRECVED: {
auto it = event->event_info.ap_probereqrecved;
ESP_LOGVV(TAG, "Event: AP receive Probe Request MAC=%s RSSI=%d", format_mac_addr(it.mac).c_str(), it.rssi);
break;
}
#if USE_ARDUINO_VERSION_CODE >= VERSION_CODE(2, 4, 0)
case EVENT_OPMODE_CHANGED: {
auto it = event->event_info.opmode_changed;
ESP_LOGV(TAG, "Event: Changed Mode old=%s new=%s", LOG_STR_ARG(get_op_mode_str(it.old_opmode)),
LOG_STR_ARG(get_op_mode_str(it.new_opmode)));
break;
}
case EVENT_SOFTAPMODE_DISTRIBUTE_STA_IP: {
auto it = event->event_info.distribute_sta_ip;
ESP_LOGV(TAG, "Event: AP Distribute Station IP MAC=%s IP=%s aid=%u", format_mac_addr(it.mac).c_str(),
format_ip_addr(it.ip).c_str(), it.aid);
break;
}
#endif
default:
break;
}
if (event->event == EVENT_STAMODE_DISCONNECTED) {
global_wifi_component->error_from_callback_ = true;
}
WiFiMockClass::_event_callback(event);
}
bool WiFiComponent::wifi_apply_output_power_(float output_power) {
uint8_t val = static_cast<uint8_t>(output_power * 4);
system_phy_set_max_tpw(val);
return true;
}
bool WiFiComponent::wifi_sta_pre_setup_() {
if (!this->wifi_mode_(true, {}))
return false;
bool ret1, ret2;
ETS_UART_INTR_DISABLE();
ret1 = wifi_station_set_auto_connect(0);
ret2 = wifi_station_set_reconnect_policy(false);
ETS_UART_INTR_ENABLE();
if (!ret1 || !ret2) {
ESP_LOGV(TAG, "Disabling Auto-Connect failed!");
}
delay(10);
return true;
}
void WiFiComponent::wifi_pre_setup_() {
wifi_set_event_handler_cb(&WiFiComponent::wifi_event_callback);
// Make sure WiFi is in clean state before anything starts
this->wifi_mode_(false, false);
}
WiFiSTAConnectStatus WiFiComponent::wifi_sta_connect_status_() {
station_status_t status = wifi_station_get_connect_status();
switch (status) {
case STATION_GOT_IP:
return WiFiSTAConnectStatus::CONNECTED;
case STATION_NO_AP_FOUND:
return WiFiSTAConnectStatus::ERROR_NETWORK_NOT_FOUND;
;
case STATION_CONNECT_FAIL:
case STATION_WRONG_PASSWORD:
return WiFiSTAConnectStatus::ERROR_CONNECT_FAILED;
case STATION_CONNECTING:
return WiFiSTAConnectStatus::CONNECTING;
case STATION_IDLE:
default:
return WiFiSTAConnectStatus::IDLE;
}
}
bool WiFiComponent::wifi_scan_start_(bool passive) {
static bool first_scan = false;
// enable STA
if (!this->wifi_mode_(true, {}))
return false;
struct scan_config config {};
memset(&config, 0, sizeof(config));
config.ssid = nullptr;
config.bssid = nullptr;
config.channel = 0;
config.show_hidden = 1;
#if USE_ARDUINO_VERSION_CODE >= VERSION_CODE(2, 4, 0)
config.scan_type = passive ? WIFI_SCAN_TYPE_PASSIVE : WIFI_SCAN_TYPE_ACTIVE;
if (first_scan) {
if (passive) {
config.scan_time.passive = 200;
} else {
config.scan_time.active.min = 100;
config.scan_time.active.max = 200;
}
} else {
if (passive) {
config.scan_time.passive = 500;
} else {
config.scan_time.active.min = 400;
config.scan_time.active.max = 500;
}
}
#endif
first_scan = false;
bool ret = wifi_station_scan(&config, &WiFiComponent::s_wifi_scan_done_callback);
if (!ret) {
ESP_LOGV(TAG, "wifi_station_scan failed!");
return false;
}
return ret;
}
bool WiFiComponent::wifi_disconnect_() {
bool ret = true;
// Only call disconnect if interface is up
if (wifi_get_opmode() & WIFI_STA)
ret = wifi_station_disconnect();
station_config conf{};
memset(&conf, 0, sizeof(conf));
ETS_UART_INTR_DISABLE();
wifi_station_set_config_current(&conf);
ETS_UART_INTR_ENABLE();
return ret;
}
void WiFiComponent::s_wifi_scan_done_callback(void *arg, STATUS status) {
global_wifi_component->wifi_scan_done_callback_(arg, status);
}
void WiFiComponent::wifi_scan_done_callback_(void *arg, STATUS status) {
this->scan_result_.clear();
if (status != OK) {
ESP_LOGV(TAG, "Scan failed! %d", status);
this->retry_connect();
return;
}
auto *head = reinterpret_cast<bss_info *>(arg);
for (bss_info *it = head; it != nullptr; it = STAILQ_NEXT(it, next)) {
WiFiScanResult res({it->bssid[0], it->bssid[1], it->bssid[2], it->bssid[3], it->bssid[4], it->bssid[5]},
std::string(reinterpret_cast<char *>(it->ssid), it->ssid_len), it->channel, it->rssi,
it->authmode != AUTH_OPEN, it->is_hidden != 0);
this->scan_result_.push_back(res);
}
this->scan_done_ = true;
}
bool WiFiComponent::wifi_ap_ip_config_(optional<ManualIP> manual_ip) {
// enable AP
if (!this->wifi_mode_({}, true))
return false;
struct ip_info info {};
if (manual_ip.has_value()) {
info.ip = manual_ip->static_ip;
info.gw = manual_ip->gateway;
info.netmask = manual_ip->subnet;
} else {
info.ip = network::IPAddress(192, 168, 4, 1);
info.gw = network::IPAddress(192, 168, 4, 1);
info.netmask = network::IPAddress(255, 255, 255, 0);
}
if (wifi_softap_dhcps_status() == DHCP_STARTED) {
if (!wifi_softap_dhcps_stop()) {
ESP_LOGV(TAG, "Stopping DHCP server failed!");
}
}
if (!wifi_set_ip_info(SOFTAP_IF, &info)) {
ESP_LOGV(TAG, "Setting SoftAP info failed!");
return false;
}
#if USE_ARDUINO_VERSION_CODE >= VERSION_CODE(3, 0, 0)
dhcpSoftAP.begin(&info);
#endif
struct dhcps_lease lease {};
lease.enable = true;
network::IPAddress start_address = network::IPAddress(&info.ip);
start_address += 99;
lease.start_ip = start_address;
ESP_LOGV(TAG, "DHCP server IP lease start: %s", start_address.str().c_str());
start_address += 100;
lease.end_ip = start_address;
ESP_LOGV(TAG, "DHCP server IP lease end: %s", start_address.str().c_str());
if (!wifi_softap_set_dhcps_lease(&lease)) {
ESP_LOGV(TAG, "Setting SoftAP DHCP lease failed!");
return false;
}
// lease time 1440 minutes (=24 hours)
if (!wifi_softap_set_dhcps_lease_time(1440)) {
ESP_LOGV(TAG, "Setting SoftAP DHCP lease time failed!");
return false;
}
uint8_t mode = 1;
// bit0, 1 enables router information from ESP8266 SoftAP DHCP server.
if (!wifi_softap_set_dhcps_offer_option(OFFER_ROUTER, &mode)) {
ESP_LOGV(TAG, "wifi_softap_set_dhcps_offer_option failed!");
return false;
}
if (!wifi_softap_dhcps_start()) {
ESP_LOGV(TAG, "Starting SoftAP DHCPS failed!");
return false;
}
return true;
}
bool WiFiComponent::wifi_start_ap_(const WiFiAP &ap) {
// enable AP
if (!this->wifi_mode_({}, true))
return false;
struct softap_config conf {};
strncpy(reinterpret_cast<char *>(conf.ssid), ap.get_ssid().c_str(), sizeof(conf.ssid));
conf.ssid_len = static_cast<uint8>(ap.get_ssid().size());
conf.channel = ap.get_channel().value_or(1);
conf.ssid_hidden = ap.get_hidden();
conf.max_connection = 5;
conf.beacon_interval = 100;
if (ap.get_password().empty()) {
conf.authmode = AUTH_OPEN;
*conf.password = 0;
} else {
conf.authmode = AUTH_WPA2_PSK;
strncpy(reinterpret_cast<char *>(conf.password), ap.get_password().c_str(), sizeof(conf.password));
}
ETS_UART_INTR_DISABLE();
bool ret = wifi_softap_set_config_current(&conf);
ETS_UART_INTR_ENABLE();
if (!ret) {
ESP_LOGV(TAG, "wifi_softap_set_config_current failed!");
return false;
}
if (!this->wifi_ap_ip_config_(ap.get_manual_ip())) {
ESP_LOGV(TAG, "wifi_ap_ip_config_ failed!");
return false;
}
return true;
}
network::IPAddress WiFiComponent::wifi_soft_ap_ip() {
struct ip_info ip {};
wifi_get_ip_info(SOFTAP_IF, &ip);
return network::IPAddress(&ip.ip);
}
bssid_t WiFiComponent::wifi_bssid() {
bssid_t bssid{};
uint8_t *raw_bssid = WiFi.BSSID();
if (raw_bssid != nullptr) {
for (size_t i = 0; i < bssid.size(); i++)
bssid[i] = raw_bssid[i];
}
return bssid;
}
std::string WiFiComponent::wifi_ssid() { return WiFi.SSID().c_str(); }
int8_t WiFiComponent::wifi_rssi() { return WiFi.RSSI(); }
int32_t WiFiComponent::wifi_channel_() { return WiFi.channel(); }
network::IPAddress WiFiComponent::wifi_subnet_mask_() { return {(const ip_addr_t *) WiFi.subnetMask()}; }
network::IPAddress WiFiComponent::wifi_gateway_ip_() { return {(const ip_addr_t *) WiFi.gatewayIP()}; }
network::IPAddress WiFiComponent::wifi_dns_ip_(int num) { return {(const ip_addr_t *) WiFi.dnsIP(num)}; }
void WiFiComponent::wifi_loop_() {}
} // namespace wifi
} // namespace esphome
#endif