esphome/esphome/components/remote_base/remote_base.h

314 lines
10 KiB
C++

#include <utility>
#include <vector>
#pragma once
#include "esphome/components/binary_sensor/binary_sensor.h"
#include "esphome/core/automation.h"
#include "esphome/core/component.h"
#include "esphome/core/hal.h"
#ifdef USE_ESP32
#include <driver/rmt.h>
#endif
namespace esphome {
namespace remote_base {
enum ToleranceMode : uint8_t {
TOLERANCE_MODE_PERCENTAGE = 0,
TOLERANCE_MODE_TIME = 1,
};
using RawTimings = std::vector<int32_t>;
class RemoteTransmitData {
public:
void mark(uint32_t length) { this->data_.push_back(length); }
void space(uint32_t length) { this->data_.push_back(-length); }
void item(uint32_t mark, uint32_t space) {
this->mark(mark);
this->space(space);
}
void reserve(uint32_t len) { this->data_.reserve(len); }
void set_carrier_frequency(uint32_t carrier_frequency) { this->carrier_frequency_ = carrier_frequency; }
uint32_t get_carrier_frequency() const { return this->carrier_frequency_; }
const RawTimings &get_data() const { return this->data_; }
void set_data(const RawTimings &data) { this->data_ = data; }
void reset() {
this->data_.clear();
this->carrier_frequency_ = 0;
}
protected:
RawTimings data_{};
uint32_t carrier_frequency_{0};
};
class RemoteReceiveData {
public:
explicit RemoteReceiveData(const RawTimings &data, uint32_t tolerance, ToleranceMode tolerance_mode)
: data_(data), index_(0), tolerance_(tolerance), tolerance_mode_(tolerance_mode) {}
const RawTimings &get_raw_data() const { return this->data_; }
uint32_t get_index() const { return index_; }
int32_t operator[](uint32_t index) const { return this->data_[index]; }
int32_t size() const { return this->data_.size(); }
bool is_valid(uint32_t offset) const { return this->index_ + offset < this->data_.size(); }
int32_t peek(uint32_t offset = 0) const { return this->data_[this->index_ + offset]; }
bool peek_mark(uint32_t length, uint32_t offset = 0) const;
bool peek_space(uint32_t length, uint32_t offset = 0) const;
bool peek_space_at_least(uint32_t length, uint32_t offset = 0) const;
bool peek_item(uint32_t mark, uint32_t space, uint32_t offset = 0) const {
return this->peek_space(space, offset + 1) && this->peek_mark(mark, offset);
}
bool expect_mark(uint32_t length);
bool expect_space(uint32_t length);
bool expect_item(uint32_t mark, uint32_t space);
bool expect_pulse_with_gap(uint32_t mark, uint32_t space);
void advance(uint32_t amount = 1) { this->index_ += amount; }
void reset() { this->index_ = 0; }
void set_tolerance(uint32_t tolerance, ToleranceMode tolerance_mode) {
this->tolerance_ = tolerance;
this->tolerance_mode_ = tolerance_mode;
}
uint32_t get_tolerance() { return tolerance_; }
ToleranceMode get_tolerance_mode() { return this->tolerance_mode_; }
protected:
int32_t lower_bound_(uint32_t length) const {
if (this->tolerance_mode_ == TOLERANCE_MODE_TIME) {
return int32_t(length - this->tolerance_);
} else if (this->tolerance_mode_ == TOLERANCE_MODE_PERCENTAGE) {
return int32_t(100 - this->tolerance_) * length / 100U;
}
return 0;
}
int32_t upper_bound_(uint32_t length) const {
if (this->tolerance_mode_ == TOLERANCE_MODE_TIME) {
return int32_t(length + this->tolerance_);
} else if (this->tolerance_mode_ == TOLERANCE_MODE_PERCENTAGE) {
return int32_t(100 + this->tolerance_) * length / 100U;
}
return 0;
}
const RawTimings &data_;
uint32_t index_;
uint32_t tolerance_;
ToleranceMode tolerance_mode_;
};
class RemoteComponentBase {
public:
explicit RemoteComponentBase(InternalGPIOPin *pin) : pin_(pin){};
protected:
InternalGPIOPin *pin_;
};
#ifdef USE_ESP32
class RemoteRMTChannel {
public:
explicit RemoteRMTChannel(uint8_t mem_block_num = 1);
explicit RemoteRMTChannel(rmt_channel_t channel, uint8_t mem_block_num = 1);
void config_rmt(rmt_config_t &rmt);
void set_clock_divider(uint8_t clock_divider) { this->clock_divider_ = clock_divider; }
protected:
uint32_t from_microseconds_(uint32_t us) {
const uint32_t ticks_per_ten_us = 80000000u / this->clock_divider_ / 100000u;
return us * ticks_per_ten_us / 10;
}
uint32_t to_microseconds_(uint32_t ticks) {
const uint32_t ticks_per_ten_us = 80000000u / this->clock_divider_ / 100000u;
return (ticks * 10) / ticks_per_ten_us;
}
RemoteComponentBase *remote_base_;
rmt_channel_t channel_{RMT_CHANNEL_0};
uint8_t mem_block_num_;
uint8_t clock_divider_{80};
};
#endif
class RemoteTransmitterBase : public RemoteComponentBase {
public:
RemoteTransmitterBase(InternalGPIOPin *pin) : RemoteComponentBase(pin) {}
class TransmitCall {
public:
explicit TransmitCall(RemoteTransmitterBase *parent) : parent_(parent) {}
RemoteTransmitData *get_data() { return &this->parent_->temp_; }
void set_send_times(uint32_t send_times) { send_times_ = send_times; }
void set_send_wait(uint32_t send_wait) { send_wait_ = send_wait; }
void perform() { this->parent_->send_(this->send_times_, this->send_wait_); }
protected:
RemoteTransmitterBase *parent_;
uint32_t send_times_{1};
uint32_t send_wait_{0};
};
TransmitCall transmit() {
this->temp_.reset();
return TransmitCall(this);
}
template<typename Protocol>
void transmit(const typename Protocol::ProtocolData &data, uint32_t send_times = 1, uint32_t send_wait = 0) {
auto call = this->transmit();
Protocol().encode(call.get_data(), data);
call.set_send_times(send_times);
call.set_send_wait(send_wait);
call.perform();
}
protected:
void send_(uint32_t send_times, uint32_t send_wait);
virtual void send_internal(uint32_t send_times, uint32_t send_wait) = 0;
void send_single_() { this->send_(1, 0); }
/// Use same vector for all transmits, avoids many allocations
RemoteTransmitData temp_;
};
class RemoteReceiverListener {
public:
virtual bool on_receive(RemoteReceiveData data) = 0;
};
class RemoteReceiverDumperBase {
public:
virtual bool dump(RemoteReceiveData src) = 0;
virtual bool is_secondary() { return false; }
};
class RemoteReceiverBase : public RemoteComponentBase {
public:
RemoteReceiverBase(InternalGPIOPin *pin) : RemoteComponentBase(pin) {}
void register_listener(RemoteReceiverListener *listener) { this->listeners_.push_back(listener); }
void register_dumper(RemoteReceiverDumperBase *dumper);
void set_tolerance(uint32_t tolerance, ToleranceMode tolerance_mode) {
this->tolerance_ = tolerance;
this->tolerance_mode_ = tolerance_mode;
}
protected:
void call_listeners_();
void call_dumpers_();
void call_listeners_dumpers_() {
this->call_listeners_();
this->call_dumpers_();
}
std::vector<RemoteReceiverListener *> listeners_;
std::vector<RemoteReceiverDumperBase *> dumpers_;
std::vector<RemoteReceiverDumperBase *> secondary_dumpers_;
RawTimings temp_;
uint32_t tolerance_{25};
ToleranceMode tolerance_mode_{TOLERANCE_MODE_PERCENTAGE};
};
class RemoteReceiverBinarySensorBase : public binary_sensor::BinarySensorInitiallyOff,
public Component,
public RemoteReceiverListener {
public:
explicit RemoteReceiverBinarySensorBase() {}
void dump_config() override;
virtual bool matches(RemoteReceiveData src) = 0;
bool on_receive(RemoteReceiveData src) override;
};
/* TEMPLATES */
template<typename T> class RemoteProtocol {
public:
using ProtocolData = T;
virtual void encode(RemoteTransmitData *dst, const ProtocolData &data) = 0;
virtual optional<ProtocolData> decode(RemoteReceiveData src) = 0;
virtual void dump(const ProtocolData &data) = 0;
};
template<typename T> class RemoteReceiverBinarySensor : public RemoteReceiverBinarySensorBase {
public:
RemoteReceiverBinarySensor() : RemoteReceiverBinarySensorBase() {}
protected:
bool matches(RemoteReceiveData src) override {
auto proto = T();
auto res = proto.decode(src);
return res.has_value() && *res == this->data_;
}
public:
void set_data(typename T::ProtocolData data) { data_ = data; }
protected:
typename T::ProtocolData data_;
};
template<typename T>
class RemoteReceiverTrigger : public Trigger<typename T::ProtocolData>, public RemoteReceiverListener {
protected:
bool on_receive(RemoteReceiveData src) override {
auto proto = T();
auto res = proto.decode(src);
if (res.has_value()) {
this->trigger(*res);
return true;
}
return false;
}
};
class RemoteTransmittable {
public:
RemoteTransmittable() {}
RemoteTransmittable(RemoteTransmitterBase *transmitter) : transmitter_(transmitter) {}
void set_transmitter(RemoteTransmitterBase *transmitter) { this->transmitter_ = transmitter; }
protected:
template<typename Protocol>
void transmit_(const typename Protocol::ProtocolData &data, uint32_t send_times = 1, uint32_t send_wait = 0) {
this->transmitter_->transmit<Protocol>(data, send_times, send_wait);
}
RemoteTransmitterBase *transmitter_;
};
template<typename... Ts> class RemoteTransmitterActionBase : public RemoteTransmittable, public Action<Ts...> {
TEMPLATABLE_VALUE(uint32_t, send_times)
TEMPLATABLE_VALUE(uint32_t, send_wait)
protected:
void play(Ts... x) override {
auto call = this->transmitter_->transmit();
this->encode(call.get_data(), x...);
call.set_send_times(this->send_times_.value_or(x..., 1));
call.set_send_wait(this->send_wait_.value_or(x..., 0));
call.perform();
}
virtual void encode(RemoteTransmitData *dst, Ts... x) = 0;
};
template<typename T> class RemoteReceiverDumper : public RemoteReceiverDumperBase {
public:
bool dump(RemoteReceiveData src) override {
auto proto = T();
auto decoded = proto.decode(src);
if (!decoded.has_value())
return false;
proto.dump(*decoded);
return true;
}
};
#define DECLARE_REMOTE_PROTOCOL_(prefix) \
using prefix##BinarySensor = RemoteReceiverBinarySensor<prefix##Protocol>; \
using prefix##Trigger = RemoteReceiverTrigger<prefix##Protocol>; \
using prefix##Dumper = RemoteReceiverDumper<prefix##Protocol>;
#define DECLARE_REMOTE_PROTOCOL(prefix) DECLARE_REMOTE_PROTOCOL_(prefix)
} // namespace remote_base
} // namespace esphome