esphome/esphome/components/modbus_controller/modbus_controller.h

438 lines
18 KiB
C++

#pragma once
#include "esphome/core/component.h"
#include "esphome/core/automation.h"
#include "esphome/components/modbus/modbus.h"
#include <list>
#include <map>
#include <queue>
#include <vector>
namespace esphome {
namespace modbus_controller {
class ModbusController;
enum class ModbusFunctionCode {
CUSTOM = 0x00,
READ_COILS = 0x01,
READ_DISCRETE_INPUTS = 0x02,
READ_HOLDING_REGISTERS = 0x03,
READ_INPUT_REGISTERS = 0x04,
WRITE_SINGLE_COIL = 0x05,
WRITE_SINGLE_REGISTER = 0x06,
READ_EXCEPTION_STATUS = 0x07, // not implemented
DIAGNOSTICS = 0x08, // not implemented
GET_COMM_EVENT_COUNTER = 0x0B, // not implemented
GET_COMM_EVENT_LOG = 0x0C, // not implemented
WRITE_MULTIPLE_COILS = 0x0F,
WRITE_MULTIPLE_REGISTERS = 0x10,
REPORT_SERVER_ID = 0x11, // not implemented
READ_FILE_RECORD = 0x14, // not implemented
WRITE_FILE_RECORD = 0x15, // not implemented
MASK_WRITE_REGISTER = 0x16, // not implemented
READ_WRITE_MULTIPLE_REGISTERS = 0x17, // not implemented
READ_FIFO_QUEUE = 0x18, // not implemented
};
enum class ModbusRegisterType : int {
CUSTOM = 0x0,
COIL = 0x01,
DISCRETE_INPUT = 0x02,
HOLDING = 0x03,
READ = 0x04,
};
enum class SensorValueType : uint8_t {
RAW = 0x00, // variable length
U_WORD = 0x1, // 1 Register unsigned
U_DWORD = 0x2, // 2 Registers unsigned
S_WORD = 0x3, // 1 Register signed
S_DWORD = 0x4, // 2 Registers signed
BIT = 0x5,
U_DWORD_R = 0x6, // 2 Registers unsigned
S_DWORD_R = 0x7, // 2 Registers unsigned
U_QWORD = 0x8,
S_QWORD = 0x9,
U_QWORD_R = 0xA,
S_QWORD_R = 0xB,
FP32 = 0xC,
FP32_R = 0xD
};
struct RegisterRange {
uint16_t start_address;
ModbusRegisterType register_type;
uint8_t register_count;
uint8_t skip_updates; // the config value
uint64_t first_sensorkey;
uint8_t skip_updates_counter; // the running value
} __attribute__((packed));
inline ModbusFunctionCode modbus_register_read_function(ModbusRegisterType reg_type) {
switch (reg_type) {
case ModbusRegisterType::COIL:
return ModbusFunctionCode::READ_COILS;
break;
case ModbusRegisterType::DISCRETE_INPUT:
return ModbusFunctionCode::READ_DISCRETE_INPUTS;
break;
case ModbusRegisterType::HOLDING:
return ModbusFunctionCode::READ_HOLDING_REGISTERS;
break;
case ModbusRegisterType::READ:
return ModbusFunctionCode::READ_INPUT_REGISTERS;
break;
default:
return ModbusFunctionCode::CUSTOM;
break;
}
}
inline ModbusFunctionCode modbus_register_write_function(ModbusRegisterType reg_type) {
switch (reg_type) {
case ModbusRegisterType::COIL:
return ModbusFunctionCode::WRITE_SINGLE_COIL;
break;
case ModbusRegisterType::DISCRETE_INPUT:
return ModbusFunctionCode::CUSTOM;
break;
case ModbusRegisterType::HOLDING:
return ModbusFunctionCode::READ_WRITE_MULTIPLE_REGISTERS;
break;
case ModbusRegisterType::READ:
default:
return ModbusFunctionCode::CUSTOM;
break;
}
}
/** All sensors are stored in a map
* to enable binary sensors for values encoded as bits in the same register the key of each sensor
* the key is a 64 bit integer that combines the register properties
* sensormap_ is sorted by this key. The key ensures the correct order when creating consequtive ranges
* Format: function_code (8 bit) | start address (16 bit)| offset (8bit)| bitmask (32 bit)
*/
inline uint64_t calc_key(ModbusRegisterType register_type, uint16_t start_address, uint8_t offset = 0,
uint32_t bitmask = 0) {
return uint64_t((uint16_t(register_type) << 24) + (uint32_t(start_address) << 8) + (offset & 0xFF)) << 32 | bitmask;
}
inline uint16_t register_from_key(uint64_t key) { return (key >> 40) & 0xFFFF; }
inline uint8_t c_to_hex(char c) { return (c >= 'A') ? (c >= 'a') ? (c - 'a' + 10) : (c - 'A' + 10) : (c - '0'); }
/** Get a byte from a hex string
* hex_byte_from_str("1122",1) returns uint_8 value 0x22 == 34
* hex_byte_from_str("1122",0) returns 0x11
* @param value string containing hex encoding
* @param position offset in bytes. Because each byte is encoded in 2 hex digits the position of the original byte in
* the hex string is byte_pos * 2
* @return byte value
*/
inline uint8_t byte_from_hex_str(const std::string &value, uint8_t pos) {
if (value.length() < pos * 2 + 1)
return 0;
return (c_to_hex(value[pos * 2]) << 4) | c_to_hex(value[pos * 2 + 1]);
}
/** Get a word from a hex string
* @param value string containing hex encoding
* @param position offset in bytes. Because each byte is encoded in 2 hex digits the position of the original byte in
* the hex string is byte_pos * 2
* @return word value
*/
inline uint16_t word_from_hex_str(const std::string &value, uint8_t pos) {
return byte_from_hex_str(value, pos) << 8 | byte_from_hex_str(value, pos + 1);
}
/** Get a dword from a hex string
* @param value string containing hex encoding
* @param position offset in bytes. Because each byte is encoded in 2 hex digits the position of the original byte in
* the hex string is byte_pos * 2
* @return dword value
*/
inline uint32_t dword_from_hex_str(const std::string &value, uint8_t pos) {
return word_from_hex_str(value, pos) << 16 | word_from_hex_str(value, pos + 2);
}
/** Get a qword from a hex string
* @param value string containing hex encoding
* @param position offset in bytes. Because each byte is encoded in 2 hex digits the position of the original byte in
* the hex string is byte_pos * 2
* @return qword value
*/
inline uint64_t qword_from_hex_str(const std::string &value, uint8_t pos) {
return static_cast<uint64_t>(dword_from_hex_str(value, pos)) << 32 | dword_from_hex_str(value, pos + 4);
}
// Extract data from modbus response buffer
/** Extract data from modbus response buffer
* @param T one of supported integer data types int_8,int_16,int_32,int_64
* @param data modbus response buffer (uint8_t)
* @param buffer_offset offset in bytes.
* @return value of type T extracted from buffer
*/
template<typename T> T get_data(const std::vector<uint8_t> &data, size_t buffer_offset) {
if (sizeof(T) == sizeof(uint8_t)) {
return T(data[buffer_offset]);
}
if (sizeof(T) == sizeof(uint16_t)) {
return T((uint16_t(data[buffer_offset + 0]) << 8) | (uint16_t(data[buffer_offset + 1]) << 0));
}
if (sizeof(T) == sizeof(uint32_t)) {
return get_data<uint16_t>(data, buffer_offset) << 16 | get_data<uint16_t>(data, (buffer_offset + 2));
}
if (sizeof(T) == sizeof(uint64_t)) {
return static_cast<uint64_t>(get_data<uint32_t>(data, buffer_offset)) << 32 |
(static_cast<uint64_t>(get_data<uint32_t>(data, buffer_offset + 4)));
}
}
/** Extract coil data from modbus response buffer
* Responses for coil are packed into bytes .
* coil 3 is bit 3 of the first response byte
* coil 9 is bit 2 of the second response byte
* @param coil number of the cil
* @param data modbus response buffer (uint8_t)
* @return content of coil register
*/
inline bool coil_from_vector(int coil, const std::vector<uint8_t> &data) {
auto data_byte = coil / 8;
return (data[data_byte] & (1 << (coil % 8))) > 0;
}
/** Extract bits from value and shift right according to the bitmask
* if the bitmask is 0x00F0 we want the values frrom bit 5 - 8.
* the result is then shifted right by the postion if the first right set bit in the mask
* Usefull for modbus data where more than one value is packed in a 16 bit register
* Example: on Epever the "Length of night" register 0x9065 encodes values of the whole night length of time as
* D15 - D8 = hour, D7 - D0 = minute
* To get the hours use mask 0xFF00 and 0x00FF for the minute
* @param data an integral value between 16 aand 32 bits,
* @param bitmask the bitmask to apply
*/
template<typename N> N mask_and_shift_by_rightbit(N data, uint32_t mask) {
auto result = (mask & data);
if (result == 0) {
return result;
}
for (size_t pos = 0; pos < sizeof(N) << 3; pos++) {
if ((mask & (1 << pos)) != 0)
return result >> pos;
}
return 0;
}
/** convert float value to vector<uint16_t> suitable for sending
* @param value float value to cconvert
* @param value_type defines if 16/32 or FP32 is used
* @return vector containing the modbus register words in correct order
*/
std::vector<uint16_t> float_to_payload(float value, SensorValueType value_type);
/** convert vector<uint8_t> response payload to float
* @param value float value to cconvert
* @param sensor_value_type defines if 16/32/64 bits or FP32 is used
* @param offset offset to the data in data
* @param bitmask bitmask used for masking and shifting
* @return float version of the input
*/
float payload_to_float(const std::vector<uint8_t> &data, SensorValueType sensor_value_type, uint8_t offset,
uint32_t bitmask);
class ModbusController;
class SensorItem {
public:
virtual void parse_and_publish(const std::vector<uint8_t> &data) = 0;
void set_custom_data(const std::vector<uint8_t> &data) { custom_data = data; }
uint64_t getkey() const { return calc_key(register_type, start_address, offset, bitmask); }
size_t virtual get_register_size() const {
if (register_type == ModbusRegisterType::COIL || register_type == ModbusRegisterType::DISCRETE_INPUT)
return 1;
else
return register_count * 2;
}
ModbusRegisterType register_type;
SensorValueType sensor_value_type;
uint16_t start_address;
uint32_t bitmask;
uint8_t offset;
uint8_t register_count;
uint8_t skip_updates;
std::vector<uint8_t> custom_data{};
bool force_new_range{false};
};
class ModbusCommandItem {
public:
static const size_t MAX_PAYLOAD_BYTES = 240;
static const uint8_t MAX_SEND_REPEATS = 5;
ModbusController *modbusdevice;
uint16_t register_address;
uint16_t register_count;
ModbusFunctionCode function_code;
ModbusRegisterType register_type;
std::function<void(ModbusRegisterType register_type, uint16_t start_address, const std::vector<uint8_t> &data)>
on_data_func;
std::vector<uint8_t> payload = {};
bool send();
// wrong commands (esp. custom commands) can block the send queue
// limit the number of repeats
uint8_t send_countdown{MAX_SEND_REPEATS};
/// factory methods
/** Create modbus read command
* Function code 02-04
* @param modbusdevice pointer to the device to execute the command
* @param function_code modbus function code for the read command
* @param start_address modbus address of the first register to read
* @param register_count number of registers to read
* @param handler function called when the response is received
* @return ModbusCommandItem with the prepared command
*/
static ModbusCommandItem create_read_command(
ModbusController *modbusdevice, ModbusRegisterType register_type, uint16_t start_address, uint16_t register_count,
std::function<void(ModbusRegisterType register_type, uint16_t start_address, const std::vector<uint8_t> &data)>
&&handler);
/** Create modbus read command
* Function code 02-04
* @param modbusdevice pointer to the device to execute the command
* @param function_code modbus function code for the read command
* @param start_address modbus address of the first register to read
* @param register_count number of registers to read
* @return ModbusCommandItem with the prepared command
*/
static ModbusCommandItem create_read_command(ModbusController *modbusdevice, ModbusRegisterType register_type,
uint16_t start_address, uint16_t register_count);
/** Create modbus read command
* Function code 02-04
* @param modbusdevice pointer to the device to execute the command
* @param function_code modbus function code for the read command
* @param start_address modbus address of the first register to read
* @param register_count number of registers to read
* @param handler function called when the response is received
* @return ModbusCommandItem with the prepared command
*/
static ModbusCommandItem create_write_multiple_command(ModbusController *modbusdevice, uint16_t start_address,
uint16_t register_count, const std::vector<uint16_t> &values);
/** Create modbus write multiple registers command
* Function 16 (10hex) Write Multiple Registers
* @param modbusdevice pointer to the device to execute the command
* @param start_address modbus address of the first register to read
* @param register_count number of registers to read
* @param values uint16_t array to be written to the registers
* @return ModbusCommandItem with the prepared command
*/
static ModbusCommandItem create_write_single_command(ModbusController *modbusdevice, uint16_t start_address,
int16_t value);
/** Create modbus write single registers command
* Function 05 (05hex) Write Single Coil
* @param modbusdevice pointer to the device to execute the command
* @param start_address modbus address of the first register to read
* @param value uint16_t data to be written to the registers
* @return ModbusCommandItem with the prepared command
*/
static ModbusCommandItem create_write_single_coil(ModbusController *modbusdevice, uint16_t address, bool value);
/** Create modbus write multiple registers command
* Function 15 (0Fhex) Write Multiple Coils
* @param modbusdevice pointer to the device to execute the command
* @param start_address modbus address of the first register to read
* @param value bool vector of values to be written to the registers
* @return ModbusCommandItem with the prepared command
*/
static ModbusCommandItem create_write_multiple_coils(ModbusController *modbusdevice, uint16_t start_address,
const std::vector<bool> &values);
/** Create custom modbus command
* @param modbusdevice pointer to the device to execute the command
* @param values byte vector of data to be sent to the device. The compplete payload must be provided with the
* exception of the crc codess
* @param handler function called when the response is received. Default is just logging a response
* @return ModbusCommandItem with the prepared command
*/
static ModbusCommandItem create_custom_command(
ModbusController *modbusdevice, const std::vector<uint8_t> &values,
std::function<void(ModbusRegisterType register_type, uint16_t start_address, const std::vector<uint8_t> &data)>
&&handler = nullptr);
};
/** Modbus controller class.
* Each instance handles the modbus commuinication for all sensors with the same modbus address
*
* all sensor items (sensors, switches, binarysensor ...) are parsed in modbus address ranges.
* when esphome calls ModbusController::Update the commands for each range are created and sent
* Responses for the commands are dispatched to the modbus sensor items.
*/
class ModbusController : public PollingComponent, public modbus::ModbusDevice {
public:
ModbusController(uint16_t throttle = 0) : modbus::ModbusDevice(), command_throttle_(throttle){};
void dump_config() override;
void loop() override;
void setup() override;
void update() override;
/// queues a modbus command in the send queue
void queue_command(const ModbusCommandItem &command);
/// Registers a sensor with the controller. Called by esphomes code generator
void add_sensor_item(SensorItem *item) { sensormap_[item->getkey()] = item; }
/// called when a modbus response was prased without errors
void on_modbus_data(const std::vector<uint8_t> &data) override;
/// called when a modbus error response was received
void on_modbus_error(uint8_t function_code, uint8_t exception_code) override;
/// default delegate called by process_modbus_data when a response has retrieved from the incoming queue
void on_register_data(ModbusRegisterType register_type, uint16_t start_address, const std::vector<uint8_t> &data);
/// default delegate called by process_modbus_data when a response for a write response has retrieved from the
/// incoming queue
void on_write_register_response(ModbusRegisterType register_type, uint16_t start_address,
const std::vector<uint8_t> &data);
/// called by esphome generated code to set the command_throttle period
void set_command_throttle(uint16_t command_throttle) { this->command_throttle_ = command_throttle; }
protected:
/// parse sensormap_ and create range of sequential addresses
size_t create_register_ranges_();
// find register in sensormap. Returns iterator with all registers having the same start address
std::map<uint64_t, SensorItem *>::iterator find_register_(ModbusRegisterType register_type, uint16_t start_address);
/// submit the read command for the address range to the send queue
void update_range_(RegisterRange &r);
/// parse incoming modbus data
void process_modbus_data_(const ModbusCommandItem *response);
/// send the next modbus command from the send queue
bool send_next_command_();
/// get the number of queued modbus commands (should be mostly empty)
size_t get_command_queue_length_() { return command_queue_.size(); }
/// dump the parsed sensormap for diagnostics
void dump_sensormap_();
/// Collection of all sensors for this component
/// see calc_key how the key is contructed
std::map<uint64_t, SensorItem *> sensormap_;
/// Continous range of modbus registers
std::vector<RegisterRange> register_ranges_;
/// Hold the pending requests to be sent
std::list<std::unique_ptr<ModbusCommandItem>> command_queue_;
/// modbus response data waiting to get processed
std::queue<std::unique_ptr<ModbusCommandItem>> incoming_queue_;
/// when was the last send operation
uint32_t last_command_timestamp_;
/// min time in ms between sending modbus commands
uint16_t command_throttle_;
};
/** convert vector<uint8_t> response payload to float
* @param value float value to cconvert
* @param item SensorItem object
* @return float version of the input
*/
inline float payload_to_float(const std::vector<uint8_t> &data, const SensorItem &item) {
return payload_to_float(data, item.sensor_value_type, item.offset, item.bitmask);
}
} // namespace modbus_controller
} // namespace esphome