esphome/esphome/components/bme680/bme680.cpp

484 lines
15 KiB
C++

#include "bme680.h"
#include "esphome/core/log.h"
namespace esphome {
namespace bme680 {
static const char *TAG = "bme680.sensor";
static const uint8_t BME680_REGISTER_COEFF1 = 0x89;
static const uint8_t BME680_REGISTER_COEFF2 = 0xE1;
static const uint8_t BME680_REGISTER_CONFIG = 0x75;
static const uint8_t BME680_REGISTER_CONTROL_MEAS = 0x74;
static const uint8_t BME680_REGISTER_CONTROL_HUMIDITY = 0x72;
static const uint8_t BME680_REGISTER_CONTROL_GAS1 = 0x71;
static const uint8_t BME680_REGISTER_CONTROL_GAS0 = 0x70;
static const uint8_t BME680_REGISTER_HEATER_HEAT0 = 0x5A;
static const uint8_t BME680_REGISTER_HEATER_WAIT0 = 0x64;
static const uint8_t BME680_REGISTER_CHIPID = 0xD0;
static const uint8_t BME680_REGISTER_FIELD0 = 0x1D;
const float BME680_GAS_LOOKUP_TABLE_1[16] PROGMEM = {0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -0.8,
0.0, 0.0, -0.2, -0.5, 0.0, -1.0, 0.0, 0.0};
const float BME680_GAS_LOOKUP_TABLE_2[16] PROGMEM = {0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.0, -0.8,
-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
static const char *oversampling_to_str(BME680Oversampling oversampling) {
switch (oversampling) {
case BME680_OVERSAMPLING_NONE:
return "None";
case BME680_OVERSAMPLING_1X:
return "1x";
case BME680_OVERSAMPLING_2X:
return "2x";
case BME680_OVERSAMPLING_4X:
return "4x";
case BME680_OVERSAMPLING_8X:
return "8x";
case BME680_OVERSAMPLING_16X:
return "16x";
default:
return "UNKNOWN";
}
}
static const char *iir_filter_to_str(BME680IIRFilter filter) {
switch (filter) {
case BME680_IIR_FILTER_OFF:
return "OFF";
case BME680_IIR_FILTER_1X:
return "1x";
case BME680_IIR_FILTER_3X:
return "3x";
case BME680_IIR_FILTER_7X:
return "7x";
case BME680_IIR_FILTER_15X:
return "15x";
case BME680_IIR_FILTER_31X:
return "31x";
case BME680_IIR_FILTER_63X:
return "63x";
case BME680_IIR_FILTER_127X:
return "127x";
default:
return "UNKNOWN";
}
}
void BME680Component::setup() {
ESP_LOGCONFIG(TAG, "Setting up BME680...");
uint8_t chip_id;
if (!this->read_byte(BME680_REGISTER_CHIPID, &chip_id) || chip_id != 0x61) {
this->mark_failed();
return;
}
// Read calibration
uint8_t cal1[25];
if (!this->read_bytes(BME680_REGISTER_COEFF1, cal1, 25)) {
this->mark_failed();
return;
}
uint8_t cal2[16];
if (!this->read_bytes(BME680_REGISTER_COEFF2, cal2, 16)) {
this->mark_failed();
return;
}
this->calibration_.t1 = cal2[9] << 8 | cal2[8];
this->calibration_.t2 = cal1[2] << 8 | cal1[1];
this->calibration_.t3 = cal1[3];
this->calibration_.h1 = cal2[2] << 4 | (cal2[1] & 0x0F);
this->calibration_.h2 = cal2[0] << 4 | cal2[1];
this->calibration_.h3 = cal2[3];
this->calibration_.h4 = cal2[4];
this->calibration_.h5 = cal2[5];
this->calibration_.h6 = cal2[6];
this->calibration_.h7 = cal2[7];
this->calibration_.p1 = cal1[6] << 8 | cal1[5];
this->calibration_.p2 = cal1[8] << 8 | cal1[7];
this->calibration_.p3 = cal1[9];
this->calibration_.p4 = cal1[12] << 8 | cal1[11];
this->calibration_.p5 = cal1[14] << 8 | cal1[13];
this->calibration_.p6 = cal1[16];
this->calibration_.p7 = cal1[15];
this->calibration_.p8 = cal1[20] << 8 | cal1[19];
this->calibration_.p9 = cal1[22] << 8 | cal1[21];
this->calibration_.p10 = cal1[23];
this->calibration_.gh1 = cal2[14];
this->calibration_.gh2 = cal2[12] << 8 | cal2[13];
this->calibration_.gh3 = cal2[15];
if (!this->read_byte(0x02, &this->calibration_.res_heat_range)) {
this->mark_failed();
return;
}
if (!this->read_byte(0x00, &this->calibration_.res_heat_val)) {
this->mark_failed();
return;
}
if (!this->read_byte(0x04, &this->calibration_.range_sw_err)) {
this->mark_failed();
return;
}
this->calibration_.ambient_temperature = 25; // prime ambient temperature
// Config register
uint8_t config_register;
if (!this->read_byte(BME680_REGISTER_CONFIG, &config_register)) {
this->mark_failed();
return;
}
config_register &= ~0b00011100;
config_register |= (this->iir_filter_ & 0b111) << 2;
if (!this->write_byte(BME680_REGISTER_CONFIG, config_register)) {
this->mark_failed();
return;
}
// Humidity control register
uint8_t hum_control;
if (!this->read_byte(BME680_REGISTER_CONTROL_HUMIDITY, &hum_control)) {
this->mark_failed();
return;
}
hum_control &= ~0b00000111;
hum_control |= this->humidity_oversampling_ & 0b111;
if (!this->write_byte(BME680_REGISTER_CONTROL_HUMIDITY, hum_control)) {
this->mark_failed();
return;
}
// Gas 1 control register
uint8_t gas1_control;
if (!this->read_byte(BME680_REGISTER_CONTROL_GAS1, &gas1_control)) {
this->mark_failed();
return;
}
gas1_control &= ~0b00011111;
gas1_control |= 1 << 4;
gas1_control |= 0; // profile 0
if (!this->write_byte(BME680_REGISTER_CONTROL_GAS1, gas1_control)) {
this->mark_failed();
return;
}
const bool heat_off = this->heater_temperature_ == 0 || this->heater_duration_ == 0;
// Gas 0 control register
uint8_t gas0_control;
if (!this->read_byte(BME680_REGISTER_CONTROL_GAS0, &gas0_control)) {
this->mark_failed();
return;
}
gas0_control &= ~0b00001000;
gas0_control |= heat_off ? 0b100 : 0b000;
if (!this->write_byte(BME680_REGISTER_CONTROL_GAS0, gas0_control)) {
this->mark_failed();
return;
}
if (!heat_off) {
// Gas Heater Temperature
uint8_t temperature = this->calc_heater_resistance_(this->heater_temperature_);
if (!this->write_byte(BME680_REGISTER_HEATER_HEAT0, temperature)) {
this->mark_failed();
return;
}
// Gas Heater Duration
uint8_t duration = this->calc_heater_duration_(this->heater_duration_);
if (!this->write_byte(BME680_REGISTER_HEATER_WAIT0, duration)) {
this->mark_failed();
return;
}
}
}
void BME680Component::dump_config() {
ESP_LOGCONFIG(TAG, "BME680:");
LOG_I2C_DEVICE(this);
if (this->is_failed()) {
ESP_LOGE(TAG, "Communication with BME680 failed!");
}
ESP_LOGCONFIG(TAG, " IIR Filter: %s", iir_filter_to_str(this->iir_filter_));
LOG_UPDATE_INTERVAL(this);
LOG_SENSOR(" ", "Temperature", this->temperature_sensor_);
ESP_LOGCONFIG(TAG, " Oversampling: %s", oversampling_to_str(this->temperature_oversampling_));
LOG_SENSOR(" ", "Pressure", this->pressure_sensor_);
ESP_LOGCONFIG(TAG, " Oversampling: %s", oversampling_to_str(this->pressure_oversampling_));
LOG_SENSOR(" ", "Humidity", this->humidity_sensor_);
ESP_LOGCONFIG(TAG, " Oversampling: %s", oversampling_to_str(this->humidity_oversampling_));
LOG_SENSOR(" ", "Gas Resistance", this->gas_resistance_sensor_);
if (this->heater_duration_ == 0 || this->heater_temperature_ == 0) {
ESP_LOGCONFIG(TAG, " Heater OFF");
} else {
ESP_LOGCONFIG(TAG, " Heater temperature=%u°C duration=%ums", this->heater_temperature_, this->heater_duration_);
}
}
float BME680Component::get_setup_priority() const { return setup_priority::DATA; }
void BME680Component::update() {
uint8_t meas_control = 0; // No need to fetch, we're setting all fields
meas_control |= (this->temperature_oversampling_ & 0b111) << 5;
meas_control |= (this->pressure_oversampling_ & 0b111) << 5;
meas_control |= 0b01; // forced mode
if (!this->write_byte(BME680_REGISTER_CONTROL_MEAS, meas_control)) {
this->status_set_warning();
return;
}
this->set_timeout("data", this->calc_meas_duration_(), [this]() { this->read_data_(); });
}
uint8_t BME680Component::calc_heater_resistance_(uint16_t temperature) {
if (temperature < 200)
temperature = 200;
if (temperature > 400)
temperature = 400;
const uint8_t ambient_temperature = this->calibration_.ambient_temperature;
const int8_t gh1 = this->calibration_.gh1;
const int16_t gh2 = this->calibration_.gh2;
const int8_t gh3 = this->calibration_.gh3;
const uint8_t res_heat_range = this->calibration_.res_heat_range;
const uint8_t res_heat_val = this->calibration_.res_heat_val;
uint8_t heatr_res;
int32_t var1;
int32_t var2;
int32_t var3;
int32_t var4;
int32_t var5;
int32_t heatr_res_x100;
var1 = (((int32_t) ambient_temperature * gh3) / 1000) * 256;
var2 = (gh1 + 784) * (((((gh2 + 154009) * temperature * 5) / 100) + 3276800) / 10);
var3 = var1 + (var2 / 2);
var4 = (var3 / (res_heat_range + 4));
var5 = (131 * res_heat_val) + 65536;
heatr_res_x100 = (int32_t)(((var4 / var5) - 250) * 34);
heatr_res = (uint8_t)((heatr_res_x100 + 50) / 100);
return heatr_res;
}
uint8_t BME680Component::calc_heater_duration_(uint16_t duration) {
uint8_t factor = 0;
uint8_t duration_value;
if (duration >= 0xfc0) {
duration_value = 0xff;
} else {
while (duration > 0x3F) {
duration /= 4;
factor += 1;
}
duration_value = duration + (factor * 64);
}
return duration_value;
}
void BME680Component::read_data_() {
uint8_t data[15];
if (!this->read_bytes(BME680_REGISTER_FIELD0, data, 15)) {
this->status_set_warning();
return;
}
uint32_t raw_temperature = (uint32_t(data[5]) << 12) | (uint32_t(data[6]) << 4) | (uint32_t(data[7]) >> 4);
uint32_t raw_pressure = (uint32_t(data[2]) << 12) | (uint32_t(data[3]) << 4) | (uint32_t(data[4]) >> 4);
uint32_t raw_humidity = (uint32_t(data[8]) << 8) | uint32_t(data[9]);
uint16_t raw_gas = (uint16_t(data[13]) << 2) | (uint16_t(14) >> 6);
uint8_t gas_range = data[14] & 0x0F;
float temperature = this->calc_temperature_(raw_temperature);
float pressure = this->calc_pressure_(raw_pressure);
float humidity = this->calc_humidity_(raw_humidity);
float gas_resistance = NAN;
if (data[14] & 0x20) {
gas_resistance = this->calc_gas_resistance_(raw_gas, gas_range);
}
ESP_LOGD(TAG, "Got temperature=%.1f°C pressure=%.1fhPa humidity=%.1f%% gas_resistance=%.1fΩ", temperature, pressure,
humidity, gas_resistance);
if (this->temperature_sensor_ != nullptr)
this->temperature_sensor_->publish_state(temperature);
if (this->pressure_sensor_ != nullptr)
this->pressure_sensor_->publish_state(pressure);
if (this->humidity_sensor_ != nullptr)
this->humidity_sensor_->publish_state(humidity);
if (this->gas_resistance_sensor_ != nullptr)
this->gas_resistance_sensor_->publish_state(gas_resistance);
this->status_clear_warning();
}
float BME680Component::calc_temperature_(uint32_t raw_temperature) {
float var1 = 0;
float var2 = 0;
float var3 = 0;
float calc_temp = 0;
float temp_adc = raw_temperature;
const float t1 = this->calibration_.t1;
const float t2 = this->calibration_.t2;
const float t3 = this->calibration_.t3;
/* calculate var1 data */
var1 = ((temp_adc / 16384.0f) - (t1 / 1024.0f)) * t2;
/* calculate var2 data */
var3 = (temp_adc / 131072.0f) - (t1 / 8192.0f);
var2 = var3 * var3 * t3 * 16.0f;
/* t_fine value*/
this->calibration_.tfine = (var1 + var2);
/* compensated temperature data*/
calc_temp = ((this->calibration_.tfine) / 5120.0f);
return calc_temp;
}
float BME680Component::calc_pressure_(uint32_t raw_pressure) {
const float tfine = this->calibration_.tfine;
const float p1 = this->calibration_.p1;
const float p2 = this->calibration_.p2;
const float p3 = this->calibration_.p3;
const float p4 = this->calibration_.p4;
const float p5 = this->calibration_.p5;
const float p6 = this->calibration_.p6;
const float p7 = this->calibration_.p7;
const float p8 = this->calibration_.p8;
const float p9 = this->calibration_.p9;
const float p10 = this->calibration_.p10;
float var1 = 0;
float var2 = 0;
float var3 = 0;
float var4 = 0;
float calc_pres = 0;
var1 = (tfine / 2.0f) - 64000.0f;
var2 = var1 * var1 * (p6 / 131072.0f);
var2 = var2 + var1 * p5 * 2.0f;
var2 = (var2 / 4.0f) + (p4 * 65536.0f);
var1 = (((p3 * var1 * var1) / 16384.0f) + (p2 * var1)) / 524288.0f;
var1 = (1.0f + (var1 / 32768.0f)) * p1;
calc_pres = 1048576.0f - float(raw_pressure);
/* Avoid exception caused by division by zero */
if (int(var1) != 0) {
calc_pres = ((calc_pres - (var2 / 4096.0f)) * 6250.0f) / var1;
var1 = (p9 * calc_pres * calc_pres) / 2147483648.0f;
var2 = calc_pres * (p8 / 32768.0f);
var4 = calc_pres / 256.0f;
var3 = var4 * var4 * var4 * (p10 / 131072.0f);
calc_pres = calc_pres + (var1 + var2 + var3 + (p7 * 128.0f)) / 16.0f;
} else {
calc_pres = 0;
}
return calc_pres / 100.0f;
}
float BME680Component::calc_humidity_(uint16_t raw_humidity) {
const float tfine = this->calibration_.tfine;
const float h1 = this->calibration_.h1;
const float h2 = this->calibration_.h2;
const float h3 = this->calibration_.h3;
const float h4 = this->calibration_.h4;
const float h5 = this->calibration_.h5;
const float h6 = this->calibration_.h6;
const float h7 = this->calibration_.h7;
float calc_hum = 0;
float var1 = 0;
float var2 = 0;
float var3 = 0;
float var4 = 0;
float temp_comp;
/* compensated temperature data*/
temp_comp = tfine / 5120.0f;
var1 = float(raw_humidity) - (h1 * 16.0f + ((h3 / 2.0f) * temp_comp));
var2 = var1 *
(((h2 / 262144.0f) * (1.0f + ((h4 / 16384.0f) * temp_comp) + ((h5 / 1048576.0f) * temp_comp * temp_comp))));
var3 = h6 / 16384.0f;
var4 = h7 / 2097152.0f;
calc_hum = var2 + (var3 + var4 * temp_comp) * var2 * var2;
if (calc_hum > 100.0f)
calc_hum = 100.0f;
else if (calc_hum < 0.0f)
calc_hum = 0.0f;
return calc_hum;
}
uint32_t BME680Component::calc_gas_resistance_(uint16_t raw_gas, uint8_t range) {
float calc_gas_res;
float var1 = 0;
float var2 = 0;
float var3 = 0;
const float range_sw_err = this->calibration_.range_sw_err;
var1 = 1340.0f + (5.0f * range_sw_err);
var2 = var1 * (1.0f + BME680_GAS_LOOKUP_TABLE_1[range] / 100.0f);
var3 = 1.0f + (BME680_GAS_LOOKUP_TABLE_2[range] / 100.0f);
calc_gas_res = 1.0f / (var3 * 0.000000125f * float(1 << range) * (((float(raw_gas) - 512.0f) / var2) + 1.0f));
return static_cast<uint32_t>(calc_gas_res);
}
uint32_t BME680Component::calc_meas_duration_() {
uint32_t tph_dur; // Calculate in us
uint32_t meas_cycles;
const uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16};
meas_cycles = os_to_meas_cycles[this->temperature_oversampling_];
meas_cycles += os_to_meas_cycles[this->pressure_oversampling_];
meas_cycles += os_to_meas_cycles[this->humidity_oversampling_];
/* TPH measurement duration */
tph_dur = meas_cycles * 1963u;
tph_dur += 477 * 4; // TPH switching duration
tph_dur += 477 * 5; // Gas measurement duration
tph_dur += 500; // Get it to the closest whole number.
tph_dur /= 1000; // Convert to ms
tph_dur += 1; // Wake up duration of 1ms
/* The remaining time should be used for heating */
tph_dur += this->heater_duration_;
return tph_dur;
}
void BME680Component::set_temperature_oversampling(BME680Oversampling temperature_oversampling) {
this->temperature_oversampling_ = temperature_oversampling;
}
void BME680Component::set_pressure_oversampling(BME680Oversampling pressure_oversampling) {
this->pressure_oversampling_ = pressure_oversampling;
}
void BME680Component::set_humidity_oversampling(BME680Oversampling humidity_oversampling) {
this->humidity_oversampling_ = humidity_oversampling;
}
void BME680Component::set_iir_filter(BME680IIRFilter iir_filter) { this->iir_filter_ = iir_filter; }
void BME680Component::set_heater(uint16_t heater_temperature, uint16_t heater_duration) {
this->heater_temperature_ = heater_temperature;
this->heater_duration_ = heater_duration;
}
} // namespace bme680
} // namespace esphome