mirror of
https://github.com/esphome/esphome.git
synced 2024-11-13 10:25:03 +01:00
719 lines
26 KiB
C++
719 lines
26 KiB
C++
#pragma once
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
#include "esphome/core/optional.h"
|
|
|
|
#ifdef USE_ESP32
|
|
#include <esp_heap_caps.h>
|
|
#endif
|
|
|
|
#if defined(USE_ESP32)
|
|
#include <freertos/FreeRTOS.h>
|
|
#include <freertos/semphr.h>
|
|
#elif defined(USE_LIBRETINY)
|
|
#include <FreeRTOS.h>
|
|
#include <semphr.h>
|
|
#endif
|
|
|
|
#define HOT __attribute__((hot))
|
|
#define ESPDEPRECATED(msg, when) __attribute__((deprecated(msg)))
|
|
#define ESPHOME_ALWAYS_INLINE __attribute__((always_inline))
|
|
#define PACKED __attribute__((packed))
|
|
|
|
// Various functions can be constexpr in C++14, but not in C++11 (because their body isn't just a return statement).
|
|
// Define a substitute constexpr keyword for those functions, until we can drop C++11 support.
|
|
#if __cplusplus >= 201402L
|
|
#define constexpr14 constexpr
|
|
#else
|
|
#define constexpr14 inline // constexpr implies inline
|
|
#endif
|
|
|
|
namespace esphome {
|
|
|
|
/// @name STL backports
|
|
///@{
|
|
|
|
// Backports for various STL features we like to use. Pull in the STL implementation wherever available, to avoid
|
|
// ambiguity and to provide a uniform API.
|
|
|
|
// std::to_string() from C++11, available from libstdc++/g++ 8
|
|
// See https://github.com/espressif/esp-idf/issues/1445
|
|
#if _GLIBCXX_RELEASE >= 8
|
|
using std::to_string;
|
|
#else
|
|
std::string to_string(int value); // NOLINT
|
|
std::string to_string(long value); // NOLINT
|
|
std::string to_string(long long value); // NOLINT
|
|
std::string to_string(unsigned value); // NOLINT
|
|
std::string to_string(unsigned long value); // NOLINT
|
|
std::string to_string(unsigned long long value); // NOLINT
|
|
std::string to_string(float value);
|
|
std::string to_string(double value);
|
|
std::string to_string(long double value);
|
|
#endif
|
|
|
|
// std::is_trivially_copyable from C++11, implemented in libstdc++/g++ 5.1 (but minor releases can't be detected)
|
|
#if _GLIBCXX_RELEASE >= 6
|
|
using std::is_trivially_copyable;
|
|
#else
|
|
// Implementing this is impossible without compiler intrinsics, so don't bother. Invalid usage will be detected on
|
|
// other variants that use a newer compiler anyway.
|
|
// NOLINTNEXTLINE(readability-identifier-naming)
|
|
template<typename T> struct is_trivially_copyable : public std::integral_constant<bool, true> {};
|
|
#endif
|
|
|
|
// std::make_unique() from C++14
|
|
#if __cpp_lib_make_unique >= 201304
|
|
using std::make_unique;
|
|
#else
|
|
template<typename T, typename... Args> std::unique_ptr<T> make_unique(Args &&...args) {
|
|
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
|
|
}
|
|
#endif
|
|
|
|
// std::enable_if_t from C++14
|
|
#if __cplusplus >= 201402L
|
|
using std::enable_if_t;
|
|
#else
|
|
template<bool B, class T = void> using enable_if_t = typename std::enable_if<B, T>::type;
|
|
#endif
|
|
|
|
// std::clamp from C++17
|
|
#if __cpp_lib_clamp >= 201603
|
|
using std::clamp;
|
|
#else
|
|
template<typename T, typename Compare> constexpr const T &clamp(const T &v, const T &lo, const T &hi, Compare comp) {
|
|
return comp(v, lo) ? lo : comp(hi, v) ? hi : v;
|
|
}
|
|
template<typename T> constexpr const T &clamp(const T &v, const T &lo, const T &hi) {
|
|
return clamp(v, lo, hi, std::less<T>{});
|
|
}
|
|
#endif
|
|
|
|
// std::is_invocable from C++17
|
|
#if __cpp_lib_is_invocable >= 201703
|
|
using std::is_invocable;
|
|
#else
|
|
// https://stackoverflow.com/a/37161919/8924614
|
|
template<class T, class... Args> struct is_invocable { // NOLINT(readability-identifier-naming)
|
|
template<class U> static auto test(U *p) -> decltype((*p)(std::declval<Args>()...), void(), std::true_type());
|
|
template<class U> static auto test(...) -> decltype(std::false_type());
|
|
static constexpr auto value = decltype(test<T>(nullptr))::value; // NOLINT
|
|
};
|
|
#endif
|
|
|
|
// std::bit_cast from C++20
|
|
#if __cpp_lib_bit_cast >= 201806
|
|
using std::bit_cast;
|
|
#else
|
|
/// Convert data between types, without aliasing issues or undefined behaviour.
|
|
template<
|
|
typename To, typename From,
|
|
enable_if_t<sizeof(To) == sizeof(From) && is_trivially_copyable<From>::value && is_trivially_copyable<To>::value,
|
|
int> = 0>
|
|
To bit_cast(const From &src) {
|
|
To dst;
|
|
memcpy(&dst, &src, sizeof(To));
|
|
return dst;
|
|
}
|
|
#endif
|
|
|
|
// std::byteswap from C++23
|
|
template<typename T> constexpr14 T byteswap(T n) {
|
|
T m;
|
|
for (size_t i = 0; i < sizeof(T); i++)
|
|
reinterpret_cast<uint8_t *>(&m)[i] = reinterpret_cast<uint8_t *>(&n)[sizeof(T) - 1 - i];
|
|
return m;
|
|
}
|
|
template<> constexpr14 uint8_t byteswap(uint8_t n) { return n; }
|
|
template<> constexpr14 uint16_t byteswap(uint16_t n) { return __builtin_bswap16(n); }
|
|
template<> constexpr14 uint32_t byteswap(uint32_t n) { return __builtin_bswap32(n); }
|
|
template<> constexpr14 uint64_t byteswap(uint64_t n) { return __builtin_bswap64(n); }
|
|
template<> constexpr14 int8_t byteswap(int8_t n) { return n; }
|
|
template<> constexpr14 int16_t byteswap(int16_t n) { return __builtin_bswap16(n); }
|
|
template<> constexpr14 int32_t byteswap(int32_t n) { return __builtin_bswap32(n); }
|
|
template<> constexpr14 int64_t byteswap(int64_t n) { return __builtin_bswap64(n); }
|
|
|
|
///@}
|
|
|
|
/// @name Mathematics
|
|
///@{
|
|
|
|
/// Linearly interpolate between \p start and \p end by \p completion (between 0 and 1).
|
|
float lerp(float completion, float start, float end);
|
|
|
|
/// Remap \p value from the range (\p min, \p max) to (\p min_out, \p max_out).
|
|
template<typename T, typename U> T remap(U value, U min, U max, T min_out, T max_out) {
|
|
return (value - min) * (max_out - min_out) / (max - min) + min_out;
|
|
}
|
|
|
|
/// Calculate a CRC-8 checksum of \p data with size \p len.
|
|
uint8_t crc8(const uint8_t *data, uint8_t len);
|
|
|
|
/// Calculate a CRC-16 checksum of \p data with size \p len.
|
|
uint16_t crc16(const uint8_t *data, uint16_t len, uint16_t crc = 0xffff, uint16_t reverse_poly = 0xa001,
|
|
bool refin = false, bool refout = false);
|
|
uint16_t crc16be(const uint8_t *data, uint16_t len, uint16_t crc = 0, uint16_t poly = 0x1021, bool refin = false,
|
|
bool refout = false);
|
|
|
|
/// Calculate a FNV-1 hash of \p str.
|
|
uint32_t fnv1_hash(const std::string &str);
|
|
|
|
/// Return a random 32-bit unsigned integer.
|
|
uint32_t random_uint32();
|
|
/// Return a random float between 0 and 1.
|
|
float random_float();
|
|
/// Generate \p len number of random bytes.
|
|
bool random_bytes(uint8_t *data, size_t len);
|
|
|
|
///@}
|
|
|
|
/// @name Bit manipulation
|
|
///@{
|
|
|
|
/// Encode a 16-bit value given the most and least significant byte.
|
|
constexpr uint16_t encode_uint16(uint8_t msb, uint8_t lsb) {
|
|
return (static_cast<uint16_t>(msb) << 8) | (static_cast<uint16_t>(lsb));
|
|
}
|
|
/// Encode a 32-bit value given four bytes in most to least significant byte order.
|
|
constexpr uint32_t encode_uint32(uint8_t byte1, uint8_t byte2, uint8_t byte3, uint8_t byte4) {
|
|
return (static_cast<uint32_t>(byte1) << 24) | (static_cast<uint32_t>(byte2) << 16) |
|
|
(static_cast<uint32_t>(byte3) << 8) | (static_cast<uint32_t>(byte4));
|
|
}
|
|
/// Encode a 24-bit value given three bytes in most to least significant byte order.
|
|
constexpr uint32_t encode_uint24(uint8_t byte1, uint8_t byte2, uint8_t byte3) {
|
|
return ((static_cast<uint32_t>(byte1) << 16) | (static_cast<uint32_t>(byte2) << 8) | (static_cast<uint32_t>(byte3)));
|
|
}
|
|
|
|
/// Encode a value from its constituent bytes (from most to least significant) in an array with length sizeof(T).
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
|
|
constexpr14 T encode_value(const uint8_t *bytes) {
|
|
T val = 0;
|
|
for (size_t i = 0; i < sizeof(T); i++) {
|
|
val <<= 8;
|
|
val |= bytes[i];
|
|
}
|
|
return val;
|
|
}
|
|
/// Encode a value from its constituent bytes (from most to least significant) in an std::array with length sizeof(T).
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
|
|
constexpr14 T encode_value(const std::array<uint8_t, sizeof(T)> bytes) {
|
|
return encode_value<T>(bytes.data());
|
|
}
|
|
/// Decode a value into its constituent bytes (from most to least significant).
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
|
|
constexpr14 std::array<uint8_t, sizeof(T)> decode_value(T val) {
|
|
std::array<uint8_t, sizeof(T)> ret{};
|
|
for (size_t i = sizeof(T); i > 0; i--) {
|
|
ret[i - 1] = val & 0xFF;
|
|
val >>= 8;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/// Reverse the order of 8 bits.
|
|
inline uint8_t reverse_bits(uint8_t x) {
|
|
x = ((x & 0xAA) >> 1) | ((x & 0x55) << 1);
|
|
x = ((x & 0xCC) >> 2) | ((x & 0x33) << 2);
|
|
x = ((x & 0xF0) >> 4) | ((x & 0x0F) << 4);
|
|
return x;
|
|
}
|
|
/// Reverse the order of 16 bits.
|
|
inline uint16_t reverse_bits(uint16_t x) {
|
|
return (reverse_bits(static_cast<uint8_t>(x & 0xFF)) << 8) | reverse_bits(static_cast<uint8_t>((x >> 8) & 0xFF));
|
|
}
|
|
/// Reverse the order of 32 bits.
|
|
inline uint32_t reverse_bits(uint32_t x) {
|
|
return (reverse_bits(static_cast<uint16_t>(x & 0xFFFF)) << 16) |
|
|
reverse_bits(static_cast<uint16_t>((x >> 16) & 0xFFFF));
|
|
}
|
|
|
|
/// Convert a value between host byte order and big endian (most significant byte first) order.
|
|
template<typename T> constexpr14 T convert_big_endian(T val) {
|
|
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
return byteswap(val);
|
|
#else
|
|
return val;
|
|
#endif
|
|
}
|
|
|
|
/// Convert a value between host byte order and little endian (least significant byte first) order.
|
|
template<typename T> constexpr14 T convert_little_endian(T val) {
|
|
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
return val;
|
|
#else
|
|
return byteswap(val);
|
|
#endif
|
|
}
|
|
|
|
///@}
|
|
|
|
/// @name Strings
|
|
///@{
|
|
|
|
/// Compare strings for equality in case-insensitive manner.
|
|
bool str_equals_case_insensitive(const std::string &a, const std::string &b);
|
|
|
|
/// Check whether a string starts with a value.
|
|
bool str_startswith(const std::string &str, const std::string &start);
|
|
/// Check whether a string ends with a value.
|
|
bool str_endswith(const std::string &str, const std::string &end);
|
|
|
|
/// Convert the value to a string (added as extra overload so that to_string() can be used on all stringifiable types).
|
|
inline std::string to_string(const std::string &val) { return val; }
|
|
|
|
/// Truncate a string to a specific length.
|
|
std::string str_truncate(const std::string &str, size_t length);
|
|
|
|
/// Extract the part of the string until either the first occurrence of the specified character, or the end
|
|
/// (requires str to be null-terminated).
|
|
std::string str_until(const char *str, char ch);
|
|
/// Extract the part of the string until either the first occurrence of the specified character, or the end.
|
|
std::string str_until(const std::string &str, char ch);
|
|
|
|
/// Convert the string to lower case.
|
|
std::string str_lower_case(const std::string &str);
|
|
/// Convert the string to upper case.
|
|
std::string str_upper_case(const std::string &str);
|
|
/// Convert the string to snake case (lowercase with underscores).
|
|
std::string str_snake_case(const std::string &str);
|
|
|
|
/// Sanitizes the input string by removing all characters but alphanumerics, dashes and underscores.
|
|
std::string str_sanitize(const std::string &str);
|
|
|
|
/// snprintf-like function returning std::string of maximum length \p len (excluding null terminator).
|
|
std::string __attribute__((format(printf, 1, 3))) str_snprintf(const char *fmt, size_t len, ...);
|
|
|
|
/// sprintf-like function returning std::string.
|
|
std::string __attribute__((format(printf, 1, 2))) str_sprintf(const char *fmt, ...);
|
|
|
|
///@}
|
|
|
|
/// @name Parsing & formatting
|
|
///@{
|
|
|
|
/// Parse an unsigned decimal number from a null-terminated string.
|
|
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_unsigned<T>::value), int> = 0>
|
|
optional<T> parse_number(const char *str) {
|
|
char *end = nullptr;
|
|
unsigned long value = ::strtoul(str, &end, 10); // NOLINT(google-runtime-int)
|
|
if (end == str || *end != '\0' || value > std::numeric_limits<T>::max())
|
|
return {};
|
|
return value;
|
|
}
|
|
/// Parse an unsigned decimal number.
|
|
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_unsigned<T>::value), int> = 0>
|
|
optional<T> parse_number(const std::string &str) {
|
|
return parse_number<T>(str.c_str());
|
|
}
|
|
/// Parse a signed decimal number from a null-terminated string.
|
|
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_signed<T>::value), int> = 0>
|
|
optional<T> parse_number(const char *str) {
|
|
char *end = nullptr;
|
|
signed long value = ::strtol(str, &end, 10); // NOLINT(google-runtime-int)
|
|
if (end == str || *end != '\0' || value < std::numeric_limits<T>::min() || value > std::numeric_limits<T>::max())
|
|
return {};
|
|
return value;
|
|
}
|
|
/// Parse a signed decimal number.
|
|
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_signed<T>::value), int> = 0>
|
|
optional<T> parse_number(const std::string &str) {
|
|
return parse_number<T>(str.c_str());
|
|
}
|
|
/// Parse a decimal floating-point number from a null-terminated string.
|
|
template<typename T, enable_if_t<(std::is_same<T, float>::value), int> = 0> optional<T> parse_number(const char *str) {
|
|
char *end = nullptr;
|
|
float value = ::strtof(str, &end);
|
|
if (end == str || *end != '\0' || value == HUGE_VALF)
|
|
return {};
|
|
return value;
|
|
}
|
|
/// Parse a decimal floating-point number.
|
|
template<typename T, enable_if_t<(std::is_same<T, float>::value), int> = 0>
|
|
optional<T> parse_number(const std::string &str) {
|
|
return parse_number<T>(str.c_str());
|
|
}
|
|
|
|
/** Parse bytes from a hex-encoded string into a byte array.
|
|
*
|
|
* When \p len is less than \p 2*count, the result is written to the back of \p data (i.e. this function treats \p str
|
|
* as if it were padded with zeros at the front).
|
|
*
|
|
* @param str String to read from.
|
|
* @param len Length of \p str (excluding optional null-terminator), is a limit on the number of characters parsed.
|
|
* @param data Byte array to write to.
|
|
* @param count Length of \p data.
|
|
* @return The number of characters parsed from \p str.
|
|
*/
|
|
size_t parse_hex(const char *str, size_t len, uint8_t *data, size_t count);
|
|
/// Parse \p count bytes from the hex-encoded string \p str of at least \p 2*count characters into array \p data.
|
|
inline bool parse_hex(const char *str, uint8_t *data, size_t count) {
|
|
return parse_hex(str, strlen(str), data, count) == 2 * count;
|
|
}
|
|
/// Parse \p count bytes from the hex-encoded string \p str of at least \p 2*count characters into array \p data.
|
|
inline bool parse_hex(const std::string &str, uint8_t *data, size_t count) {
|
|
return parse_hex(str.c_str(), str.length(), data, count) == 2 * count;
|
|
}
|
|
/// Parse \p count bytes from the hex-encoded string \p str of at least \p 2*count characters into vector \p data.
|
|
inline bool parse_hex(const char *str, std::vector<uint8_t> &data, size_t count) {
|
|
data.resize(count);
|
|
return parse_hex(str, strlen(str), data.data(), count) == 2 * count;
|
|
}
|
|
/// Parse \p count bytes from the hex-encoded string \p str of at least \p 2*count characters into vector \p data.
|
|
inline bool parse_hex(const std::string &str, std::vector<uint8_t> &data, size_t count) {
|
|
data.resize(count);
|
|
return parse_hex(str.c_str(), str.length(), data.data(), count) == 2 * count;
|
|
}
|
|
/** Parse a hex-encoded string into an unsigned integer.
|
|
*
|
|
* @param str String to read from, starting with the most significant byte.
|
|
* @param len Length of \p str (excluding optional null-terminator), is a limit on the number of characters parsed.
|
|
*/
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
|
|
optional<T> parse_hex(const char *str, size_t len) {
|
|
T val = 0;
|
|
if (len > 2 * sizeof(T) || parse_hex(str, len, reinterpret_cast<uint8_t *>(&val), sizeof(T)) == 0)
|
|
return {};
|
|
return convert_big_endian(val);
|
|
}
|
|
/// Parse a hex-encoded null-terminated string (starting with the most significant byte) into an unsigned integer.
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> optional<T> parse_hex(const char *str) {
|
|
return parse_hex<T>(str, strlen(str));
|
|
}
|
|
/// Parse a hex-encoded null-terminated string (starting with the most significant byte) into an unsigned integer.
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> optional<T> parse_hex(const std::string &str) {
|
|
return parse_hex<T>(str.c_str(), str.length());
|
|
}
|
|
|
|
/// Format the byte array \p data of length \p len in lowercased hex.
|
|
std::string format_hex(const uint8_t *data, size_t length);
|
|
/// Format the vector \p data in lowercased hex.
|
|
std::string format_hex(const std::vector<uint8_t> &data);
|
|
/// Format an unsigned integer in lowercased hex, starting with the most significant byte.
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> std::string format_hex(T val) {
|
|
val = convert_big_endian(val);
|
|
return format_hex(reinterpret_cast<uint8_t *>(&val), sizeof(T));
|
|
}
|
|
template<std::size_t N> std::string format_hex(const std::array<uint8_t, N> &data) {
|
|
return format_hex(data.data(), data.size());
|
|
}
|
|
|
|
/// Format the byte array \p data of length \p len in pretty-printed, human-readable hex.
|
|
std::string format_hex_pretty(const uint8_t *data, size_t length);
|
|
/// Format the word array \p data of length \p len in pretty-printed, human-readable hex.
|
|
std::string format_hex_pretty(const uint16_t *data, size_t length);
|
|
/// Format the vector \p data in pretty-printed, human-readable hex.
|
|
std::string format_hex_pretty(const std::vector<uint8_t> &data);
|
|
/// Format the vector \p data in pretty-printed, human-readable hex.
|
|
std::string format_hex_pretty(const std::vector<uint16_t> &data);
|
|
/// Format an unsigned integer in pretty-printed, human-readable hex, starting with the most significant byte.
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> std::string format_hex_pretty(T val) {
|
|
val = convert_big_endian(val);
|
|
return format_hex_pretty(reinterpret_cast<uint8_t *>(&val), sizeof(T));
|
|
}
|
|
|
|
/// Return values for parse_on_off().
|
|
enum ParseOnOffState {
|
|
PARSE_NONE = 0,
|
|
PARSE_ON,
|
|
PARSE_OFF,
|
|
PARSE_TOGGLE,
|
|
};
|
|
/// Parse a string that contains either on, off or toggle.
|
|
ParseOnOffState parse_on_off(const char *str, const char *on = nullptr, const char *off = nullptr);
|
|
|
|
/// Create a string from a value and an accuracy in decimals.
|
|
std::string value_accuracy_to_string(float value, int8_t accuracy_decimals);
|
|
|
|
/// Derive accuracy in decimals from an increment step.
|
|
int8_t step_to_accuracy_decimals(float step);
|
|
|
|
std::string base64_encode(const uint8_t *buf, size_t buf_len);
|
|
std::string base64_encode(const std::vector<uint8_t> &buf);
|
|
|
|
std::vector<uint8_t> base64_decode(const std::string &encoded_string);
|
|
size_t base64_decode(std::string const &encoded_string, uint8_t *buf, size_t buf_len);
|
|
|
|
///@}
|
|
|
|
/// @name Colors
|
|
///@{
|
|
|
|
/// Applies gamma correction of \p gamma to \p value.
|
|
float gamma_correct(float value, float gamma);
|
|
/// Reverts gamma correction of \p gamma to \p value.
|
|
float gamma_uncorrect(float value, float gamma);
|
|
|
|
/// Convert \p red, \p green and \p blue (all 0-1) values to \p hue (0-360), \p saturation (0-1) and \p value (0-1).
|
|
void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value);
|
|
/// Convert \p hue (0-360), \p saturation (0-1) and \p value (0-1) to \p red, \p green and \p blue (all 0-1).
|
|
void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue);
|
|
|
|
///@}
|
|
|
|
/// @name Units
|
|
///@{
|
|
|
|
/// Convert degrees Celsius to degrees Fahrenheit.
|
|
constexpr float celsius_to_fahrenheit(float value) { return value * 1.8f + 32.0f; }
|
|
/// Convert degrees Fahrenheit to degrees Celsius.
|
|
constexpr float fahrenheit_to_celsius(float value) { return (value - 32.0f) / 1.8f; }
|
|
|
|
///@}
|
|
|
|
/// @name Utilities
|
|
/// @{
|
|
|
|
template<typename... X> class CallbackManager;
|
|
|
|
/** Helper class to allow having multiple subscribers to a callback.
|
|
*
|
|
* @tparam Ts The arguments for the callbacks, wrapped in void().
|
|
*/
|
|
template<typename... Ts> class CallbackManager<void(Ts...)> {
|
|
public:
|
|
/// Add a callback to the list.
|
|
void add(std::function<void(Ts...)> &&callback) { this->callbacks_.push_back(std::move(callback)); }
|
|
|
|
/// Call all callbacks in this manager.
|
|
void call(Ts... args) {
|
|
for (auto &cb : this->callbacks_)
|
|
cb(args...);
|
|
}
|
|
size_t size() const { return this->callbacks_.size(); }
|
|
|
|
/// Call all callbacks in this manager.
|
|
void operator()(Ts... args) { call(args...); }
|
|
|
|
protected:
|
|
std::vector<std::function<void(Ts...)>> callbacks_;
|
|
};
|
|
|
|
/// Helper class to deduplicate items in a series of values.
|
|
template<typename T> class Deduplicator {
|
|
public:
|
|
/// Feeds the next item in the series to the deduplicator and returns whether this is a duplicate.
|
|
bool next(T value) {
|
|
if (this->has_value_) {
|
|
if (this->last_value_ == value)
|
|
return false;
|
|
}
|
|
this->has_value_ = true;
|
|
this->last_value_ = value;
|
|
return true;
|
|
}
|
|
/// Returns whether this deduplicator has processed any items so far.
|
|
bool has_value() const { return this->has_value_; }
|
|
|
|
protected:
|
|
bool has_value_{false};
|
|
T last_value_{};
|
|
};
|
|
|
|
/// Helper class to easily give an object a parent of type \p T.
|
|
template<typename T> class Parented {
|
|
public:
|
|
Parented() {}
|
|
Parented(T *parent) : parent_(parent) {}
|
|
|
|
/// Get the parent of this object.
|
|
T *get_parent() const { return parent_; }
|
|
/// Set the parent of this object.
|
|
void set_parent(T *parent) { parent_ = parent; }
|
|
|
|
protected:
|
|
T *parent_{nullptr};
|
|
};
|
|
|
|
/// @}
|
|
|
|
/// @name System APIs
|
|
///@{
|
|
|
|
/** Mutex implementation, with API based on the unavailable std::mutex.
|
|
*
|
|
* @note This mutex is non-recursive, so take care not to try to obtain the mutex while it is already taken.
|
|
*/
|
|
class Mutex {
|
|
public:
|
|
Mutex();
|
|
Mutex(const Mutex &) = delete;
|
|
void lock();
|
|
bool try_lock();
|
|
void unlock();
|
|
|
|
Mutex &operator=(const Mutex &) = delete;
|
|
|
|
private:
|
|
#if defined(USE_ESP32) || defined(USE_LIBRETINY)
|
|
SemaphoreHandle_t handle_;
|
|
#endif
|
|
};
|
|
|
|
/** Helper class that wraps a mutex with a RAII-style API.
|
|
*
|
|
* This behaves like std::lock_guard: as long as the object is alive, the mutex is held.
|
|
*/
|
|
class LockGuard {
|
|
public:
|
|
LockGuard(Mutex &mutex) : mutex_(mutex) { mutex_.lock(); }
|
|
~LockGuard() { mutex_.unlock(); }
|
|
|
|
private:
|
|
Mutex &mutex_;
|
|
};
|
|
|
|
/** Helper class to disable interrupts.
|
|
*
|
|
* This behaves like std::lock_guard: as long as the object is alive, all interrupts are disabled.
|
|
*
|
|
* Please note all functions called when the interrupt lock must be marked IRAM_ATTR (loading code into
|
|
* instruction cache is done via interrupts; disabling interrupts prevents data not already in cache from being
|
|
* pulled from flash).
|
|
*
|
|
* Example usage:
|
|
*
|
|
* \code{.cpp}
|
|
* // interrupts are enabled
|
|
* {
|
|
* InterruptLock lock;
|
|
* // do something
|
|
* // interrupts are disabled
|
|
* }
|
|
* // interrupts are enabled
|
|
* \endcode
|
|
*/
|
|
class InterruptLock {
|
|
public:
|
|
InterruptLock();
|
|
~InterruptLock();
|
|
|
|
protected:
|
|
#if defined(USE_ESP8266) || defined(USE_RP2040)
|
|
uint32_t state_;
|
|
#endif
|
|
};
|
|
|
|
/** Helper class to request `loop()` to be called as fast as possible.
|
|
*
|
|
* Usually the ESPHome main loop runs at 60 Hz, sleeping in between invocations of `loop()` if necessary. When a higher
|
|
* execution frequency is necessary, you can use this class to make the loop run continuously without waiting.
|
|
*/
|
|
class HighFrequencyLoopRequester {
|
|
public:
|
|
/// Start running the loop continuously.
|
|
void start();
|
|
/// Stop running the loop continuously.
|
|
void stop();
|
|
|
|
/// Check whether the loop is running continuously.
|
|
static bool is_high_frequency();
|
|
|
|
protected:
|
|
bool started_{false};
|
|
static uint8_t num_requests; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
|
|
};
|
|
|
|
/// Get the device MAC address as raw bytes, written into the provided byte array (6 bytes).
|
|
void get_mac_address_raw(uint8_t *mac); // NOLINT(readability-non-const-parameter)
|
|
|
|
/// Get the device MAC address as a string, in lowercase hex notation.
|
|
std::string get_mac_address();
|
|
|
|
/// Get the device MAC address as a string, in colon-separated uppercase hex notation.
|
|
std::string get_mac_address_pretty();
|
|
|
|
#ifdef USE_ESP32
|
|
/// Set the MAC address to use from the provided byte array (6 bytes).
|
|
void set_mac_address(uint8_t *mac);
|
|
#endif
|
|
|
|
/// Delay for the given amount of microseconds, possibly yielding to other processes during the wait.
|
|
void delay_microseconds_safe(uint32_t us);
|
|
|
|
///@}
|
|
|
|
/// @name Memory management
|
|
///@{
|
|
|
|
/** An STL allocator that uses SPI RAM.
|
|
*
|
|
* By setting flags, it can be configured to don't try main memory if SPI RAM is full or unavailable, and to return
|
|
* `nulllptr` instead of aborting when no memory is available.
|
|
*/
|
|
template<class T> class ExternalRAMAllocator {
|
|
public:
|
|
using value_type = T;
|
|
|
|
enum Flags {
|
|
NONE = 0,
|
|
REFUSE_INTERNAL = 1 << 0, ///< Refuse falling back to internal memory when external RAM is full or unavailable.
|
|
ALLOW_FAILURE = 1 << 1, ///< Don't abort when memory allocation fails.
|
|
};
|
|
|
|
ExternalRAMAllocator() = default;
|
|
ExternalRAMAllocator(Flags flags) : flags_{flags} {}
|
|
template<class U> constexpr ExternalRAMAllocator(const ExternalRAMAllocator<U> &other) : flags_{other.flags_} {}
|
|
|
|
T *allocate(size_t n) {
|
|
size_t size = n * sizeof(T);
|
|
T *ptr = nullptr;
|
|
#ifdef USE_ESP32
|
|
ptr = static_cast<T *>(heap_caps_malloc(size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT));
|
|
#endif
|
|
if (ptr == nullptr && (this->flags_ & Flags::REFUSE_INTERNAL) == 0)
|
|
ptr = static_cast<T *>(malloc(size)); // NOLINT(cppcoreguidelines-owning-memory,cppcoreguidelines-no-malloc)
|
|
if (ptr == nullptr && (this->flags_ & Flags::ALLOW_FAILURE) == 0)
|
|
abort();
|
|
return ptr;
|
|
}
|
|
|
|
void deallocate(T *p, size_t n) {
|
|
free(p); // NOLINT(cppcoreguidelines-owning-memory,cppcoreguidelines-no-malloc)
|
|
}
|
|
|
|
private:
|
|
Flags flags_{Flags::NONE};
|
|
};
|
|
|
|
/// @}
|
|
|
|
/// @name Internal functions
|
|
///@{
|
|
|
|
/** Helper function to make `id(var)` known from lambdas work in custom components.
|
|
*
|
|
* This function is not called from lambdas, the code generator replaces calls to it with the appropriate variable.
|
|
*/
|
|
template<typename T, enable_if_t<!std::is_pointer<T>::value, int> = 0> T id(T value) { return value; }
|
|
/** Helper function to make `id(var)` known from lambdas work in custom components.
|
|
*
|
|
* This function is not called from lambdas, the code generator replaces calls to it with the appropriate variable.
|
|
*/
|
|
template<typename T, enable_if_t<std::is_pointer<T *>::value, int> = 0> T &id(T *value) { return *value; }
|
|
|
|
///@}
|
|
|
|
/// @name Deprecated functions
|
|
///@{
|
|
|
|
ESPDEPRECATED("hexencode() is deprecated, use format_hex_pretty() instead.", "2022.1")
|
|
inline std::string hexencode(const uint8_t *data, uint32_t len) { return format_hex_pretty(data, len); }
|
|
|
|
template<typename T>
|
|
ESPDEPRECATED("hexencode() is deprecated, use format_hex_pretty() instead.", "2022.1")
|
|
std::string hexencode(const T &data) {
|
|
return hexencode(data.data(), data.size());
|
|
}
|
|
|
|
///@}
|
|
|
|
} // namespace esphome
|