esphome/esphome/components/pipsolar/pipsolar.cpp

922 lines
38 KiB
C++

#include "pipsolar.h"
#include "esphome/core/log.h"
namespace esphome {
namespace pipsolar {
static const char *const TAG = "pipsolar";
void Pipsolar::setup() {
this->state_ = STATE_IDLE;
this->command_start_millis_ = 0;
}
void Pipsolar::empty_uart_buffer_() {
uint8_t byte;
while (this->available()) {
this->read_byte(&byte);
}
}
void Pipsolar::loop() {
// Read message
if (this->state_ == STATE_IDLE) {
this->empty_uart_buffer_();
switch (this->send_next_command_()) {
case 0:
// no command send (empty queue) time to poll
if (millis() - this->last_poll_ > this->update_interval_) {
this->send_next_poll_();
this->last_poll_ = millis();
}
return;
break;
case 1:
// command send
return;
break;
}
}
if (this->state_ == STATE_COMMAND_COMPLETE) {
if (this->check_incoming_length_(4)) {
ESP_LOGD(TAG, "response length for command OK");
if (this->check_incoming_crc_()) {
// crc ok
if (this->read_buffer_[1] == 'A' && this->read_buffer_[2] == 'C' && this->read_buffer_[3] == 'K') {
ESP_LOGD(TAG, "command successful");
} else {
ESP_LOGD(TAG, "command not successful");
}
this->command_queue_[this->command_queue_position_] = std::string("");
this->command_queue_position_ = (command_queue_position_ + 1) % COMMAND_QUEUE_LENGTH;
this->state_ = STATE_IDLE;
} else {
// crc failed
this->command_queue_[this->command_queue_position_] = std::string("");
this->command_queue_position_ = (command_queue_position_ + 1) % COMMAND_QUEUE_LENGTH;
this->state_ = STATE_IDLE;
}
} else {
ESP_LOGD(TAG, "response length for command %s not OK: with length %zu",
this->command_queue_[this->command_queue_position_].c_str(), this->read_pos_);
this->command_queue_[this->command_queue_position_] = std::string("");
this->command_queue_position_ = (command_queue_position_ + 1) % COMMAND_QUEUE_LENGTH;
this->state_ = STATE_IDLE;
}
}
if (this->state_ == STATE_POLL_DECODED) {
std::string mode;
switch (this->used_polling_commands_[this->last_polling_command_].identifier) {
case POLLING_QPIRI:
if (this->grid_rating_voltage_) {
this->grid_rating_voltage_->publish_state(value_grid_rating_voltage_);
}
if (this->grid_rating_current_) {
this->grid_rating_current_->publish_state(value_grid_rating_current_);
}
if (this->ac_output_rating_voltage_) {
this->ac_output_rating_voltage_->publish_state(value_ac_output_rating_voltage_);
}
if (this->ac_output_rating_frequency_) {
this->ac_output_rating_frequency_->publish_state(value_ac_output_rating_frequency_);
}
if (this->ac_output_rating_current_) {
this->ac_output_rating_current_->publish_state(value_ac_output_rating_current_);
}
if (this->ac_output_rating_apparent_power_) {
this->ac_output_rating_apparent_power_->publish_state(value_ac_output_rating_apparent_power_);
}
if (this->ac_output_rating_active_power_) {
this->ac_output_rating_active_power_->publish_state(value_ac_output_rating_active_power_);
}
if (this->battery_rating_voltage_) {
this->battery_rating_voltage_->publish_state(value_battery_rating_voltage_);
}
if (this->battery_recharge_voltage_) {
this->battery_recharge_voltage_->publish_state(value_battery_recharge_voltage_);
}
if (this->battery_under_voltage_) {
this->battery_under_voltage_->publish_state(value_battery_under_voltage_);
}
if (this->battery_bulk_voltage_) {
this->battery_bulk_voltage_->publish_state(value_battery_bulk_voltage_);
}
if (this->battery_float_voltage_) {
this->battery_float_voltage_->publish_state(value_battery_float_voltage_);
}
if (this->battery_type_) {
this->battery_type_->publish_state(value_battery_type_);
}
if (this->current_max_ac_charging_current_) {
this->current_max_ac_charging_current_->publish_state(value_current_max_ac_charging_current_);
}
if (this->current_max_charging_current_) {
this->current_max_charging_current_->publish_state(value_current_max_charging_current_);
}
if (this->input_voltage_range_) {
this->input_voltage_range_->publish_state(value_input_voltage_range_);
}
// special for input voltage range switch
if (this->input_voltage_range_switch_) {
this->input_voltage_range_switch_->publish_state(value_input_voltage_range_ == 1);
}
if (this->output_source_priority_) {
this->output_source_priority_->publish_state(value_output_source_priority_);
}
// special for output source priority switches
if (this->output_source_priority_utility_switch_) {
this->output_source_priority_utility_switch_->publish_state(value_output_source_priority_ == 0);
}
if (this->output_source_priority_solar_switch_) {
this->output_source_priority_solar_switch_->publish_state(value_output_source_priority_ == 1);
}
if (this->output_source_priority_battery_switch_) {
this->output_source_priority_battery_switch_->publish_state(value_output_source_priority_ == 2);
}
if (this->charger_source_priority_) {
this->charger_source_priority_->publish_state(value_charger_source_priority_);
}
if (this->parallel_max_num_) {
this->parallel_max_num_->publish_state(value_parallel_max_num_);
}
if (this->machine_type_) {
this->machine_type_->publish_state(value_machine_type_);
}
if (this->topology_) {
this->topology_->publish_state(value_topology_);
}
if (this->output_mode_) {
this->output_mode_->publish_state(value_output_mode_);
}
if (this->battery_redischarge_voltage_) {
this->battery_redischarge_voltage_->publish_state(value_battery_redischarge_voltage_);
}
if (this->pv_ok_condition_for_parallel_) {
this->pv_ok_condition_for_parallel_->publish_state(value_pv_ok_condition_for_parallel_);
}
// special for pv ok condition switch
if (this->pv_ok_condition_for_parallel_switch_) {
this->pv_ok_condition_for_parallel_switch_->publish_state(value_pv_ok_condition_for_parallel_ == 1);
}
if (this->pv_power_balance_) {
this->pv_power_balance_->publish_state(value_pv_power_balance_ == 1);
}
// special for power balance switch
if (this->pv_power_balance_switch_) {
this->pv_power_balance_switch_->publish_state(value_pv_power_balance_ == 1);
}
this->state_ = STATE_IDLE;
break;
case POLLING_QPIGS:
if (this->grid_voltage_) {
this->grid_voltage_->publish_state(value_grid_voltage_);
}
if (this->grid_frequency_) {
this->grid_frequency_->publish_state(value_grid_frequency_);
}
if (this->ac_output_voltage_) {
this->ac_output_voltage_->publish_state(value_ac_output_voltage_);
}
if (this->ac_output_frequency_) {
this->ac_output_frequency_->publish_state(value_ac_output_frequency_);
}
if (this->ac_output_apparent_power_) {
this->ac_output_apparent_power_->publish_state(value_ac_output_apparent_power_);
}
if (this->ac_output_active_power_) {
this->ac_output_active_power_->publish_state(value_ac_output_active_power_);
}
if (this->output_load_percent_) {
this->output_load_percent_->publish_state(value_output_load_percent_);
}
if (this->bus_voltage_) {
this->bus_voltage_->publish_state(value_bus_voltage_);
}
if (this->battery_voltage_) {
this->battery_voltage_->publish_state(value_battery_voltage_);
}
if (this->battery_charging_current_) {
this->battery_charging_current_->publish_state(value_battery_charging_current_);
}
if (this->battery_capacity_percent_) {
this->battery_capacity_percent_->publish_state(value_battery_capacity_percent_);
}
if (this->inverter_heat_sink_temperature_) {
this->inverter_heat_sink_temperature_->publish_state(value_inverter_heat_sink_temperature_);
}
if (this->pv_input_current_for_battery_) {
this->pv_input_current_for_battery_->publish_state(value_pv_input_current_for_battery_);
}
if (this->pv_input_voltage_) {
this->pv_input_voltage_->publish_state(value_pv_input_voltage_);
}
if (this->battery_voltage_scc_) {
this->battery_voltage_scc_->publish_state(value_battery_voltage_scc_);
}
if (this->battery_discharge_current_) {
this->battery_discharge_current_->publish_state(value_battery_discharge_current_);
}
if (this->add_sbu_priority_version_) {
this->add_sbu_priority_version_->publish_state(value_add_sbu_priority_version_);
}
if (this->configuration_status_) {
this->configuration_status_->publish_state(value_configuration_status_);
}
if (this->scc_firmware_version_) {
this->scc_firmware_version_->publish_state(value_scc_firmware_version_);
}
if (this->load_status_) {
this->load_status_->publish_state(value_load_status_);
}
if (this->battery_voltage_to_steady_while_charging_) {
this->battery_voltage_to_steady_while_charging_->publish_state(
value_battery_voltage_to_steady_while_charging_);
}
if (this->charging_status_) {
this->charging_status_->publish_state(value_charging_status_);
}
if (this->scc_charging_status_) {
this->scc_charging_status_->publish_state(value_scc_charging_status_);
}
if (this->ac_charging_status_) {
this->ac_charging_status_->publish_state(value_ac_charging_status_);
}
if (this->battery_voltage_offset_for_fans_on_) {
this->battery_voltage_offset_for_fans_on_->publish_state(value_battery_voltage_offset_for_fans_on_ / 10.0f);
} //.1 scale
if (this->eeprom_version_) {
this->eeprom_version_->publish_state(value_eeprom_version_);
}
if (this->pv_charging_power_) {
this->pv_charging_power_->publish_state(value_pv_charging_power_);
}
if (this->charging_to_floating_mode_) {
this->charging_to_floating_mode_->publish_state(value_charging_to_floating_mode_);
}
if (this->switch_on_) {
this->switch_on_->publish_state(value_switch_on_);
}
if (this->dustproof_installed_) {
this->dustproof_installed_->publish_state(value_dustproof_installed_);
}
this->state_ = STATE_IDLE;
break;
case POLLING_QMOD:
if (this->device_mode_) {
mode = value_device_mode_;
this->device_mode_->publish_state(mode);
}
this->state_ = STATE_IDLE;
break;
case POLLING_QFLAG:
if (this->silence_buzzer_open_buzzer_) {
this->silence_buzzer_open_buzzer_->publish_state(value_silence_buzzer_open_buzzer_);
}
if (this->overload_bypass_function_) {
this->overload_bypass_function_->publish_state(value_overload_bypass_function_);
}
if (this->lcd_escape_to_default_) {
this->lcd_escape_to_default_->publish_state(value_lcd_escape_to_default_);
}
if (this->overload_restart_function_) {
this->overload_restart_function_->publish_state(value_overload_restart_function_);
}
if (this->over_temperature_restart_function_) {
this->over_temperature_restart_function_->publish_state(value_over_temperature_restart_function_);
}
if (this->backlight_on_) {
this->backlight_on_->publish_state(value_backlight_on_);
}
if (this->alarm_on_when_primary_source_interrupt_) {
this->alarm_on_when_primary_source_interrupt_->publish_state(value_alarm_on_when_primary_source_interrupt_);
}
if (this->fault_code_record_) {
this->fault_code_record_->publish_state(value_fault_code_record_);
}
if (this->power_saving_) {
this->power_saving_->publish_state(value_power_saving_);
}
this->state_ = STATE_IDLE;
break;
case POLLING_QPIWS:
if (this->warnings_present_) {
this->warnings_present_->publish_state(value_warnings_present_);
}
if (this->faults_present_) {
this->faults_present_->publish_state(value_faults_present_);
}
if (this->warning_power_loss_) {
this->warning_power_loss_->publish_state(value_warning_power_loss_);
}
if (this->fault_inverter_fault_) {
this->fault_inverter_fault_->publish_state(value_fault_inverter_fault_);
}
if (this->fault_bus_over_) {
this->fault_bus_over_->publish_state(value_fault_bus_over_);
}
if (this->fault_bus_under_) {
this->fault_bus_under_->publish_state(value_fault_bus_under_);
}
if (this->fault_bus_soft_fail_) {
this->fault_bus_soft_fail_->publish_state(value_fault_bus_soft_fail_);
}
if (this->warning_line_fail_) {
this->warning_line_fail_->publish_state(value_warning_line_fail_);
}
if (this->fault_opvshort_) {
this->fault_opvshort_->publish_state(value_fault_opvshort_);
}
if (this->fault_inverter_voltage_too_low_) {
this->fault_inverter_voltage_too_low_->publish_state(value_fault_inverter_voltage_too_low_);
}
if (this->fault_inverter_voltage_too_high_) {
this->fault_inverter_voltage_too_high_->publish_state(value_fault_inverter_voltage_too_high_);
}
if (this->warning_over_temperature_) {
this->warning_over_temperature_->publish_state(value_warning_over_temperature_);
}
if (this->warning_fan_lock_) {
this->warning_fan_lock_->publish_state(value_warning_fan_lock_);
}
if (this->warning_battery_voltage_high_) {
this->warning_battery_voltage_high_->publish_state(value_warning_battery_voltage_high_);
}
if (this->warning_battery_low_alarm_) {
this->warning_battery_low_alarm_->publish_state(value_warning_battery_low_alarm_);
}
if (this->warning_battery_under_shutdown_) {
this->warning_battery_under_shutdown_->publish_state(value_warning_battery_under_shutdown_);
}
if (this->warning_battery_derating_) {
this->warning_battery_derating_->publish_state(value_warning_battery_derating_);
}
if (this->warning_over_load_) {
this->warning_over_load_->publish_state(value_warning_over_load_);
}
if (this->warning_eeprom_failed_) {
this->warning_eeprom_failed_->publish_state(value_warning_eeprom_failed_);
}
if (this->fault_inverter_over_current_) {
this->fault_inverter_over_current_->publish_state(value_fault_inverter_over_current_);
}
if (this->fault_inverter_soft_failed_) {
this->fault_inverter_soft_failed_->publish_state(value_fault_inverter_soft_failed_);
}
if (this->fault_self_test_failed_) {
this->fault_self_test_failed_->publish_state(value_fault_self_test_failed_);
}
if (this->fault_op_dc_voltage_over_) {
this->fault_op_dc_voltage_over_->publish_state(value_fault_op_dc_voltage_over_);
}
if (this->fault_battery_open_) {
this->fault_battery_open_->publish_state(value_fault_battery_open_);
}
if (this->fault_current_sensor_failed_) {
this->fault_current_sensor_failed_->publish_state(value_fault_current_sensor_failed_);
}
if (this->fault_battery_short_) {
this->fault_battery_short_->publish_state(value_fault_battery_short_);
}
if (this->warning_power_limit_) {
this->warning_power_limit_->publish_state(value_warning_power_limit_);
}
if (this->warning_pv_voltage_high_) {
this->warning_pv_voltage_high_->publish_state(value_warning_pv_voltage_high_);
}
if (this->fault_mppt_overload_) {
this->fault_mppt_overload_->publish_state(value_fault_mppt_overload_);
}
if (this->warning_mppt_overload_) {
this->warning_mppt_overload_->publish_state(value_warning_mppt_overload_);
}
if (this->warning_battery_too_low_to_charge_) {
this->warning_battery_too_low_to_charge_->publish_state(value_warning_battery_too_low_to_charge_);
}
if (this->fault_dc_dc_over_current_) {
this->fault_dc_dc_over_current_->publish_state(value_fault_dc_dc_over_current_);
}
if (this->fault_code_) {
this->fault_code_->publish_state(value_fault_code_);
}
if (this->warnung_low_pv_energy_) {
this->warnung_low_pv_energy_->publish_state(value_warnung_low_pv_energy_);
}
if (this->warning_high_ac_input_during_bus_soft_start_) {
this->warning_high_ac_input_during_bus_soft_start_->publish_state(
value_warning_high_ac_input_during_bus_soft_start_);
}
if (this->warning_battery_equalization_) {
this->warning_battery_equalization_->publish_state(value_warning_battery_equalization_);
}
this->state_ = STATE_IDLE;
break;
case POLLING_QT:
case POLLING_QMN:
this->state_ = STATE_IDLE;
break;
}
}
if (this->state_ == STATE_POLL_CHECKED) {
bool enabled = true;
std::string fc;
char tmp[PIPSOLAR_READ_BUFFER_LENGTH];
sprintf(tmp, "%s", this->read_buffer_);
switch (this->used_polling_commands_[this->last_polling_command_].identifier) {
case POLLING_QPIRI:
ESP_LOGD(TAG, "Decode QPIRI");
sscanf(tmp, "(%f %f %f %f %f %d %d %f %f %f %f %f %d %d %d %d %d %d %d %d %d %d %f %d %d", // NOLINT
&value_grid_rating_voltage_, &value_grid_rating_current_, &value_ac_output_rating_voltage_, // NOLINT
&value_ac_output_rating_frequency_, &value_ac_output_rating_current_, // NOLINT
&value_ac_output_rating_apparent_power_, &value_ac_output_rating_active_power_, // NOLINT
&value_battery_rating_voltage_, &value_battery_recharge_voltage_, // NOLINT
&value_battery_under_voltage_, &value_battery_bulk_voltage_, &value_battery_float_voltage_, // NOLINT
&value_battery_type_, &value_current_max_ac_charging_current_, // NOLINT
&value_current_max_charging_current_, &value_input_voltage_range_, // NOLINT
&value_output_source_priority_, &value_charger_source_priority_, &value_parallel_max_num_, // NOLINT
&value_machine_type_, &value_topology_, &value_output_mode_, // NOLINT
&value_battery_redischarge_voltage_, &value_pv_ok_condition_for_parallel_, // NOLINT
&value_pv_power_balance_); // NOLINT
if (this->last_qpiri_) {
this->last_qpiri_->publish_state(tmp);
}
this->state_ = STATE_POLL_DECODED;
break;
case POLLING_QPIGS:
ESP_LOGD(TAG, "Decode QPIGS");
sscanf( // NOLINT
tmp, // NOLINT
"(%f %f %f %f %d %d %d %d %f %d %d %d %d %f %f %d %1d%1d%1d%1d%1d%1d%1d%1d %d %d %d %1d%1d%1d", // NOLINT
&value_grid_voltage_, &value_grid_frequency_, &value_ac_output_voltage_, // NOLINT
&value_ac_output_frequency_, // NOLINT
&value_ac_output_apparent_power_, &value_ac_output_active_power_, &value_output_load_percent_, // NOLINT
&value_bus_voltage_, &value_battery_voltage_, &value_battery_charging_current_, // NOLINT
&value_battery_capacity_percent_, &value_inverter_heat_sink_temperature_, // NOLINT
&value_pv_input_current_for_battery_, &value_pv_input_voltage_, &value_battery_voltage_scc_, // NOLINT
&value_battery_discharge_current_, &value_add_sbu_priority_version_, // NOLINT
&value_configuration_status_, &value_scc_firmware_version_, &value_load_status_, // NOLINT
&value_battery_voltage_to_steady_while_charging_, &value_charging_status_, // NOLINT
&value_scc_charging_status_, &value_ac_charging_status_, // NOLINT
&value_battery_voltage_offset_for_fans_on_, &value_eeprom_version_, &value_pv_charging_power_, // NOLINT
&value_charging_to_floating_mode_, &value_switch_on_, // NOLINT
&value_dustproof_installed_); // NOLINT
if (this->last_qpigs_) {
this->last_qpigs_->publish_state(tmp);
}
this->state_ = STATE_POLL_DECODED;
break;
case POLLING_QMOD:
ESP_LOGD(TAG, "Decode QMOD");
this->value_device_mode_ = char(this->read_buffer_[1]);
if (this->last_qmod_) {
this->last_qmod_->publish_state(tmp);
}
this->state_ = STATE_POLL_DECODED;
break;
case POLLING_QFLAG:
ESP_LOGD(TAG, "Decode QFLAG");
// result like:"(EbkuvxzDajy"
// get through all char: ignore first "(" Enable flag on 'E', Disable on 'D') else set the corresponding value
for (size_t i = 1; i < strlen(tmp); i++) {
switch (tmp[i]) {
case 'E':
enabled = true;
break;
case 'D':
enabled = false;
break;
case 'a':
this->value_silence_buzzer_open_buzzer_ = enabled;
break;
case 'b':
this->value_overload_bypass_function_ = enabled;
break;
case 'k':
this->value_lcd_escape_to_default_ = enabled;
break;
case 'u':
this->value_overload_restart_function_ = enabled;
break;
case 'v':
this->value_over_temperature_restart_function_ = enabled;
break;
case 'x':
this->value_backlight_on_ = enabled;
break;
case 'y':
this->value_alarm_on_when_primary_source_interrupt_ = enabled;
break;
case 'z':
this->value_fault_code_record_ = enabled;
break;
case 'j':
this->value_power_saving_ = enabled;
break;
}
}
if (this->last_qflag_) {
this->last_qflag_->publish_state(tmp);
}
this->state_ = STATE_POLL_DECODED;
break;
case POLLING_QPIWS:
ESP_LOGD(TAG, "Decode QPIWS");
// '(00000000000000000000000000000000'
// iterate over all available flag (as not all models have all flags, but at least in the same order)
this->value_warnings_present_ = false;
this->value_faults_present_ = true;
for (size_t i = 1; i < strlen(tmp); i++) {
enabled = tmp[i] == '1';
switch (i) {
case 1:
this->value_warning_power_loss_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 2:
this->value_fault_inverter_fault_ = enabled;
this->value_faults_present_ += enabled;
break;
case 3:
this->value_fault_bus_over_ = enabled;
this->value_faults_present_ += enabled;
break;
case 4:
this->value_fault_bus_under_ = enabled;
this->value_faults_present_ += enabled;
break;
case 5:
this->value_fault_bus_soft_fail_ = enabled;
this->value_faults_present_ += enabled;
break;
case 6:
this->value_warning_line_fail_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 7:
this->value_fault_opvshort_ = enabled;
this->value_faults_present_ += enabled;
break;
case 8:
this->value_fault_inverter_voltage_too_low_ = enabled;
this->value_faults_present_ += enabled;
break;
case 9:
this->value_fault_inverter_voltage_too_high_ = enabled;
this->value_faults_present_ += enabled;
break;
case 10:
this->value_warning_over_temperature_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 11:
this->value_warning_fan_lock_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 12:
this->value_warning_battery_voltage_high_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 13:
this->value_warning_battery_low_alarm_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 15:
this->value_warning_battery_under_shutdown_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 16:
this->value_warning_battery_derating_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 17:
this->value_warning_over_load_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 18:
this->value_warning_eeprom_failed_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 19:
this->value_fault_inverter_over_current_ = enabled;
this->value_faults_present_ += enabled;
break;
case 20:
this->value_fault_inverter_soft_failed_ = enabled;
this->value_faults_present_ += enabled;
break;
case 21:
this->value_fault_self_test_failed_ = enabled;
this->value_faults_present_ += enabled;
break;
case 22:
this->value_fault_op_dc_voltage_over_ = enabled;
this->value_faults_present_ += enabled;
break;
case 23:
this->value_fault_battery_open_ = enabled;
this->value_faults_present_ += enabled;
break;
case 24:
this->value_fault_current_sensor_failed_ = enabled;
this->value_faults_present_ += enabled;
break;
case 25:
this->value_fault_battery_short_ = enabled;
this->value_faults_present_ += enabled;
break;
case 26:
this->value_warning_power_limit_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 27:
this->value_warning_pv_voltage_high_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 28:
this->value_fault_mppt_overload_ = enabled;
this->value_faults_present_ += enabled;
break;
case 29:
this->value_warning_mppt_overload_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 30:
this->value_warning_battery_too_low_to_charge_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 31:
this->value_fault_dc_dc_over_current_ = enabled;
this->value_faults_present_ += enabled;
break;
case 32:
fc = tmp[i];
fc += tmp[i + 1];
this->value_fault_code_ = parse_number<int>(fc).value_or(0);
break;
case 34:
this->value_warnung_low_pv_energy_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 35:
this->value_warning_high_ac_input_during_bus_soft_start_ = enabled;
this->value_warnings_present_ += enabled;
break;
case 36:
this->value_warning_battery_equalization_ = enabled;
this->value_warnings_present_ += enabled;
break;
}
}
if (this->last_qpiws_) {
this->last_qpiws_->publish_state(tmp);
}
this->state_ = STATE_POLL_DECODED;
break;
case POLLING_QT:
ESP_LOGD(TAG, "Decode QT");
if (this->last_qt_) {
this->last_qt_->publish_state(tmp);
}
this->state_ = STATE_POLL_DECODED;
break;
case POLLING_QMN:
ESP_LOGD(TAG, "Decode QMN");
if (this->last_qmn_) {
this->last_qmn_->publish_state(tmp);
}
this->state_ = STATE_POLL_DECODED;
break;
default:
this->state_ = STATE_IDLE;
break;
}
return;
}
if (this->state_ == STATE_POLL_COMPLETE) {
if (this->check_incoming_crc_()) {
if (this->read_buffer_[0] == '(' && this->read_buffer_[1] == 'N' && this->read_buffer_[2] == 'A' &&
this->read_buffer_[3] == 'K') {
this->state_ = STATE_IDLE;
return;
}
// crc ok
this->state_ = STATE_POLL_CHECKED;
return;
} else {
this->state_ = STATE_IDLE;
}
}
if (this->state_ == STATE_COMMAND || this->state_ == STATE_POLL) {
while (this->available()) {
uint8_t byte;
this->read_byte(&byte);
if (this->read_pos_ == PIPSOLAR_READ_BUFFER_LENGTH) {
this->read_pos_ = 0;
this->empty_uart_buffer_();
}
this->read_buffer_[this->read_pos_] = byte;
this->read_pos_++;
// end of answer
if (byte == 0x0D) {
this->read_buffer_[this->read_pos_] = 0;
this->empty_uart_buffer_();
if (this->state_ == STATE_POLL) {
this->state_ = STATE_POLL_COMPLETE;
}
if (this->state_ == STATE_COMMAND) {
this->state_ = STATE_COMMAND_COMPLETE;
}
}
} // available
}
if (this->state_ == STATE_COMMAND) {
if (millis() - this->command_start_millis_ > esphome::pipsolar::Pipsolar::COMMAND_TIMEOUT) {
// command timeout
const char *command = this->command_queue_[this->command_queue_position_].c_str();
this->command_start_millis_ = millis();
ESP_LOGD(TAG, "timeout command from queue: %s", command);
this->command_queue_[this->command_queue_position_] = std::string("");
this->command_queue_position_ = (command_queue_position_ + 1) % COMMAND_QUEUE_LENGTH;
this->state_ = STATE_IDLE;
return;
} else {
}
}
if (this->state_ == STATE_POLL) {
if (millis() - this->command_start_millis_ > esphome::pipsolar::Pipsolar::COMMAND_TIMEOUT) {
// command timeout
ESP_LOGD(TAG, "timeout command to poll: %s", this->used_polling_commands_[this->last_polling_command_].command);
this->state_ = STATE_IDLE;
} else {
}
}
}
uint8_t Pipsolar::check_incoming_length_(uint8_t length) {
if (this->read_pos_ - 3 == length) {
return 1;
}
return 0;
}
uint8_t Pipsolar::check_incoming_crc_() {
uint16_t crc16;
crc16 = calc_crc_(read_buffer_, read_pos_ - 3);
ESP_LOGD(TAG, "checking crc on incoming message");
if (((uint8_t)((crc16) >> 8)) == read_buffer_[read_pos_ - 3] &&
((uint8_t)((crc16) &0xff)) == read_buffer_[read_pos_ - 2]) {
ESP_LOGD(TAG, "CRC OK");
read_buffer_[read_pos_ - 1] = 0;
read_buffer_[read_pos_ - 2] = 0;
read_buffer_[read_pos_ - 3] = 0;
return 1;
}
ESP_LOGD(TAG, "CRC NOK expected: %X %X but got: %X %X", ((uint8_t)((crc16) >> 8)), ((uint8_t)((crc16) &0xff)),
read_buffer_[read_pos_ - 3], read_buffer_[read_pos_ - 2]);
return 0;
}
// send next command used
uint8_t Pipsolar::send_next_command_() {
uint16_t crc16;
if (this->command_queue_[this->command_queue_position_].length() != 0) {
const char *command = this->command_queue_[this->command_queue_position_].c_str();
uint8_t byte_command[16];
uint8_t length = this->command_queue_[this->command_queue_position_].length();
for (uint8_t i = 0; i < length; i++) {
byte_command[i] = (uint8_t) this->command_queue_[this->command_queue_position_].at(i);
}
this->state_ = STATE_COMMAND;
this->command_start_millis_ = millis();
this->empty_uart_buffer_();
this->read_pos_ = 0;
crc16 = calc_crc_(byte_command, length);
this->write_str(command);
// checksum
this->write(((uint8_t)((crc16) >> 8))); // highbyte
this->write(((uint8_t)((crc16) &0xff))); // lowbyte
// end Byte
this->write(0x0D);
ESP_LOGD(TAG, "Sending command from queue: %s with length %d", command, length);
return 1;
}
return 0;
}
void Pipsolar::send_next_poll_() {
uint16_t crc16;
this->last_polling_command_ = (this->last_polling_command_ + 1) % 15;
if (this->used_polling_commands_[this->last_polling_command_].length == 0) {
this->last_polling_command_ = 0;
}
if (this->used_polling_commands_[this->last_polling_command_].length == 0) {
// no command specified
return;
}
this->state_ = STATE_POLL;
this->command_start_millis_ = millis();
this->empty_uart_buffer_();
this->read_pos_ = 0;
crc16 = calc_crc_(this->used_polling_commands_[this->last_polling_command_].command,
this->used_polling_commands_[this->last_polling_command_].length);
this->write_array(this->used_polling_commands_[this->last_polling_command_].command,
this->used_polling_commands_[this->last_polling_command_].length);
// checksum
this->write(((uint8_t)((crc16) >> 8))); // highbyte
this->write(((uint8_t)((crc16) &0xff))); // lowbyte
// end Byte
this->write(0x0D);
ESP_LOGD(TAG, "Sending polling command : %s with length %d",
this->used_polling_commands_[this->last_polling_command_].command,
this->used_polling_commands_[this->last_polling_command_].length);
}
void Pipsolar::queue_command_(const char *command, uint8_t length) {
uint8_t next_position = command_queue_position_;
for (uint8_t i = 0; i < COMMAND_QUEUE_LENGTH; i++) {
uint8_t testposition = (next_position + i) % COMMAND_QUEUE_LENGTH;
if (command_queue_[testposition].length() == 0) {
command_queue_[testposition] = command;
ESP_LOGD(TAG, "Command queued successfully: %s with length %u at position %d", command,
command_queue_[testposition].length(), testposition);
return;
}
}
ESP_LOGD(TAG, "Command queue full dropping command: %s", command);
}
void Pipsolar::switch_command(const std::string &command) {
ESP_LOGD(TAG, "got command: %s", command.c_str());
queue_command_(command.c_str(), command.length());
}
void Pipsolar::dump_config() {
ESP_LOGCONFIG(TAG, "Pipsolar:");
ESP_LOGCONFIG(TAG, "used commands:");
for (auto &used_polling_command : this->used_polling_commands_) {
if (used_polling_command.length != 0) {
ESP_LOGCONFIG(TAG, "%s", used_polling_command.command);
}
}
}
void Pipsolar::update() {}
void Pipsolar::add_polling_command_(const char *command, ENUMPollingCommand polling_command) {
for (auto &used_polling_command : this->used_polling_commands_) {
if (used_polling_command.length == strlen(command)) {
uint8_t len = strlen(command);
if (memcmp(used_polling_command.command, command, len) == 0) {
return;
}
}
if (used_polling_command.length == 0) {
size_t length = strlen(command) + 1;
const char *beg = command;
const char *end = command + length;
used_polling_command.command = new uint8_t[length]; // NOLINT(cppcoreguidelines-owning-memory)
size_t i = 0;
for (; beg != end; ++beg, ++i) {
used_polling_command.command[i] = (uint8_t)(*beg);
}
used_polling_command.errors = 0;
used_polling_command.identifier = polling_command;
used_polling_command.length = length - 1;
return;
}
}
}
uint16_t Pipsolar::calc_crc_(uint8_t *msg, int n) {
// Initial value. xmodem uses 0xFFFF but this example
// requires an initial value of zero.
uint16_t x = 0;
while (n--) {
x = crc_xmodem_update_(x, (uint16_t) *msg++);
}
return (x);
}
// See bottom of this page: http://www.nongnu.org/avr-libc/user-manual/group__util__crc.html
// Polynomial: x^16 + x^12 + x^5 + 1 (0x1021)
uint16_t Pipsolar::crc_xmodem_update_(uint16_t crc, uint8_t data) {
int i;
crc = crc ^ ((uint16_t) data << 8);
for (i = 0; i < 8; i++) {
if (crc & 0x8000) {
crc = (crc << 1) ^ 0x1021; //(polynomial = 0x1021)
} else {
crc <<= 1;
}
}
return crc;
}
} // namespace pipsolar
} // namespace esphome