esphome/esphome/components/pulse_meter/pulse_meter_sensor.cpp

149 lines
5.3 KiB
C++

#include "pulse_meter_sensor.h"
#include <utility>
#include "esphome/core/log.h"
namespace esphome {
namespace pulse_meter {
static const char *const TAG = "pulse_meter";
void PulseMeterSensor::set_total_pulses(uint32_t pulses) {
this->total_pulses_ = pulses;
if (this->total_sensor_ != nullptr) {
this->total_sensor_->publish_state(this->total_pulses_);
}
}
void PulseMeterSensor::setup() {
this->pin_->setup();
this->isr_pin_ = pin_->to_isr();
// Set the last processed edge to now for the first timeout
this->last_processed_edge_us_ = micros();
if (this->filter_mode_ == FILTER_EDGE) {
this->pin_->attach_interrupt(PulseMeterSensor::edge_intr, this, gpio::INTERRUPT_RISING_EDGE);
} else if (this->filter_mode_ == FILTER_PULSE) {
this->pin_->attach_interrupt(PulseMeterSensor::pulse_intr, this, gpio::INTERRUPT_ANY_EDGE);
}
}
void PulseMeterSensor::loop() {
// Reset the count in get before we pass it back to the ISR as set
this->get_->count_ = 0;
// Swap out set and get to get the latest state from the ISR
// The ISR could interrupt on any of these lines and the results would be consistent
auto *temp = this->set_;
this->set_ = this->get_;
this->get_ = temp;
// Check if we detected a pulse this loop
if (this->get_->count_ > 0) {
// Keep a running total of pulses if a total sensor is configured
if (this->total_sensor_ != nullptr) {
this->total_pulses_ += this->get_->count_;
const uint32_t total = this->total_pulses_;
this->total_sensor_->publish_state(total);
}
// We need to detect at least two edges to have a valid pulse width
switch (this->meter_state_) {
case MeterState::INITIAL:
case MeterState::TIMED_OUT: {
this->meter_state_ = MeterState::RUNNING;
} break;
case MeterState::RUNNING: {
uint32_t delta_us = this->get_->last_detected_edge_us_ - this->last_processed_edge_us_;
float pulse_width_us = delta_us / float(this->get_->count_);
this->publish_state((60.0f * 1000000.0f) / pulse_width_us);
} break;
}
this->last_processed_edge_us_ = this->get_->last_detected_edge_us_;
}
// No detected edges this loop
else {
const uint32_t now = micros();
const uint32_t time_since_valid_edge_us = now - this->last_processed_edge_us_;
switch (this->meter_state_) {
// Running and initial states can timeout
case MeterState::INITIAL:
case MeterState::RUNNING: {
if (time_since_valid_edge_us > this->timeout_us_) {
this->meter_state_ = MeterState::TIMED_OUT;
ESP_LOGD(TAG, "No pulse detected for %" PRIu32 "s, assuming 0 pulses/min",
time_since_valid_edge_us / 1000000);
this->publish_state(0.0f);
}
} break;
default:
break;
}
}
}
float PulseMeterSensor::get_setup_priority() const { return setup_priority::DATA; }
void PulseMeterSensor::dump_config() {
LOG_SENSOR("", "Pulse Meter", this);
LOG_PIN(" Pin: ", this->pin_);
if (this->filter_mode_ == FILTER_EDGE) {
ESP_LOGCONFIG(TAG, " Filtering rising edges less than %" PRIu32 " µs apart", this->filter_us_);
} else {
ESP_LOGCONFIG(TAG, " Filtering pulses shorter than %" PRIu32 " µs", this->filter_us_);
}
ESP_LOGCONFIG(TAG, " Assuming 0 pulses/min after not receiving a pulse for %" PRIu32 "s",
this->timeout_us_ / 1000000);
}
void IRAM_ATTR PulseMeterSensor::edge_intr(PulseMeterSensor *sensor) {
// This is an interrupt handler - we can't call any virtual method from this method
// Get the current time before we do anything else so the measurements are consistent
const uint32_t now = micros();
if ((now - sensor->last_edge_candidate_us_) >= sensor->filter_us_) {
sensor->last_edge_candidate_us_ = now;
sensor->set_->last_detected_edge_us_ = now;
sensor->set_->count_++;
}
}
void IRAM_ATTR PulseMeterSensor::pulse_intr(PulseMeterSensor *sensor) {
// This is an interrupt handler - we can't call any virtual method from this method
// Get the current time before we do anything else so the measurements are consistent
const uint32_t now = micros();
const bool pin_val = sensor->isr_pin_.digital_read();
// A pulse occurred faster than we can detect
if (sensor->last_pin_val_ == pin_val) {
// If we haven't reached the filter length yet we need to reset our last_intr_ to now
// otherwise we can consider this noise as the "pulse" was certainly less than filter_us_
if (now - sensor->last_intr_ < sensor->filter_us_) {
sensor->last_intr_ = now;
}
} else {
// Check if the last interrupt was long enough in the past
if (now - sensor->last_intr_ > sensor->filter_us_) {
// High pulse of filter length now falling (therefore last_intr_ was the rising edge)
if (!sensor->in_pulse_ && sensor->last_pin_val_) {
sensor->last_edge_candidate_us_ = sensor->last_intr_;
sensor->in_pulse_ = true;
}
// Low pulse of filter length now rising (therefore last_intr_ was the falling edge)
else if (sensor->in_pulse_ && !sensor->last_pin_val_) {
sensor->set_->last_detected_edge_us_ = sensor->last_edge_candidate_us_;
sensor->set_->count_++;
sensor->in_pulse_ = false;
}
}
sensor->last_intr_ = now;
sensor->last_pin_val_ = pin_val;
}
}
} // namespace pulse_meter
} // namespace esphome