esphome/esphome/components/sx1509/sx1509.cpp

261 lines
7.8 KiB
C++

#include "sx1509.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
namespace esphome {
namespace sx1509 {
static const char *const TAG = "sx1509";
void SX1509Component::setup() {
ESP_LOGCONFIG(TAG, "Setting up SX1509Component...");
ESP_LOGV(TAG, " Resetting devices...");
if (!this->write_byte(REG_RESET, 0x12)) {
this->mark_failed();
return;
}
this->write_byte(REG_RESET, 0x34);
uint16_t data;
if (!this->read_byte_16(REG_INTERRUPT_MASK_A, &data)) {
this->mark_failed();
return;
}
if (data != 0xFF00) {
this->mark_failed();
return;
}
clock_(INTERNAL_CLOCK_2MHZ);
delayMicroseconds(500);
if (this->has_keypad_)
this->setup_keypad_();
}
void SX1509Component::dump_config() {
ESP_LOGCONFIG(TAG, "SX1509:");
if (this->is_failed()) {
ESP_LOGE(TAG, "Setting up SX1509 failed!");
}
LOG_I2C_DEVICE(this);
}
void SX1509Component::loop() {
if (this->has_keypad_) {
if (millis() - this->last_loop_timestamp_ < min_loop_period_)
return;
this->last_loop_timestamp_ = millis();
uint16_t key_data = this->read_key_data();
for (auto *binary_sensor : this->keypad_binary_sensors_)
binary_sensor->process(key_data);
}
}
bool SX1509Component::digital_read(uint8_t pin) {
if (this->ddr_mask_ & (1 << pin)) {
uint16_t temp_reg_data;
if (!this->read_byte_16(REG_DATA_B, &temp_reg_data))
return false;
if (temp_reg_data & (1 << pin))
return true;
}
return false;
}
void SX1509Component::digital_write(uint8_t pin, bool bit_value) {
if ((~this->ddr_mask_) & (1 << pin)) {
// If the pin is an output, write high/low
uint16_t temp_reg_data = 0;
this->read_byte_16(REG_DATA_B, &temp_reg_data);
if (bit_value) {
output_state_ |= (1 << pin); // set bit in shadow register
} else {
output_state_ &= ~(1 << pin); // reset bit shadow register
}
for (uint16_t b = 0x8000; b; b >>= 1) {
if ((~ddr_mask_) & b) { // transfer bits of outputs, but don't mess with inputs
if (output_state_ & b) {
temp_reg_data |= b;
} else {
temp_reg_data &= ~b;
}
}
}
this->write_byte_16(REG_DATA_B, temp_reg_data);
}
}
void SX1509Component::pin_mode(uint8_t pin, gpio::Flags flags) {
this->read_byte_16(REG_DIR_B, &this->ddr_mask_);
if (flags == gpio::FLAG_OUTPUT) {
this->ddr_mask_ &= ~(1 << pin);
} else {
this->ddr_mask_ |= (1 << pin);
uint16_t temp_pullup;
this->read_byte_16(REG_PULL_UP_B, &temp_pullup);
uint16_t temp_pulldown;
this->read_byte_16(REG_PULL_DOWN_B, &temp_pulldown);
if (flags & gpio::FLAG_PULLUP) {
temp_pullup |= (1 << pin);
} else {
temp_pullup &= ~(1 << pin);
}
if (flags & gpio::FLAG_PULLDOWN) {
temp_pulldown |= (1 << pin);
} else {
temp_pulldown &= ~(1 << pin);
}
this->write_byte_16(REG_PULL_UP_B, temp_pullup);
this->write_byte_16(REG_PULL_DOWN_B, temp_pulldown);
}
this->write_byte_16(REG_DIR_B, this->ddr_mask_);
}
void SX1509Component::setup_led_driver(uint8_t pin) {
uint16_t temp_word = 0;
uint8_t temp_byte = 0;
this->read_byte_16(REG_INPUT_DISABLE_B, &temp_word);
temp_word |= (1 << pin);
this->write_byte_16(REG_INPUT_DISABLE_B, temp_word);
this->ddr_mask_ &= ~(1 << pin); // 0=output
this->write_byte_16(REG_DIR_B, this->ddr_mask_);
this->read_byte(REG_CLOCK, &temp_byte);
temp_byte |= (1 << 6); // Internal 2MHz oscillator part 1 (set bit 6)
temp_byte &= ~(1 << 5); // Internal 2MHz oscillator part 2 (clear bit 5)
this->write_byte(REG_CLOCK, temp_byte);
this->read_byte(REG_MISC, &temp_byte);
temp_byte &= ~(1 << 7); // set linear mode bank B
temp_byte &= ~(1 << 3); // set linear mode bank A
temp_byte |= 0x70; // Frequency of the LED Driver clock ClkX of all IOs:
this->write_byte(REG_MISC, temp_byte);
this->read_byte_16(REG_LED_DRIVER_ENABLE_B, &temp_word);
temp_word |= (1 << pin);
this->write_byte_16(REG_LED_DRIVER_ENABLE_B, temp_word);
this->read_byte_16(REG_DATA_B, &temp_word);
temp_word &= ~(1 << pin);
output_state_ &= ~(1 << pin);
this->write_byte_16(REG_DATA_B, temp_word);
}
void SX1509Component::clock_(uint8_t osc_source, uint8_t osc_pin_function, uint8_t osc_freq_out, uint8_t osc_divider) {
osc_source = (osc_source & 0b11) << 5; // 2-bit value, bits 6:5
osc_pin_function = (osc_pin_function & 1) << 4; // 1-bit value bit 4
osc_freq_out = (osc_freq_out & 0b1111); // 4-bit value, bits 3:0
uint8_t reg_clock = osc_source | osc_pin_function | osc_freq_out;
this->write_byte(REG_CLOCK, reg_clock);
osc_divider = clamp<uint8_t>(osc_divider, 1, 7u);
this->clk_x_ = 2000000;
osc_divider = (osc_divider & 0b111) << 4; // 3-bit value, bits 6:4
uint8_t reg_misc = 0;
this->read_byte(REG_MISC, &reg_misc);
reg_misc &= ~(0b111 << 4);
reg_misc |= osc_divider;
this->write_byte(REG_MISC, reg_misc);
}
void SX1509Component::setup_keypad_() {
uint8_t temp_byte = 0;
// setup row/col pins for INPUT OUTPUT
this->read_byte_16(REG_DIR_B, &this->ddr_mask_);
for (int i = 0; i < this->rows_; i++)
this->ddr_mask_ &= ~(1 << i);
for (int i = 8; i < (this->cols_ * 2); i++)
this->ddr_mask_ |= (1 << i);
this->write_byte_16(REG_DIR_B, this->ddr_mask_);
this->read_byte(REG_OPEN_DRAIN_A, &temp_byte);
for (int i = 0; i < this->rows_; i++)
temp_byte |= (1 << i);
this->write_byte(REG_OPEN_DRAIN_A, temp_byte);
this->read_byte(REG_PULL_UP_B, &temp_byte);
for (int i = 0; i < this->cols_; i++)
temp_byte |= (1 << i);
this->write_byte(REG_PULL_UP_B, temp_byte);
if (debounce_time_ >= scan_time_) {
debounce_time_ = scan_time_ >> 1; // Force debounce_time to be less than scan_time
}
set_debounce_keypad_(debounce_time_, rows_, cols_);
uint8_t scan_time_bits = 0;
for (uint8_t i = 7; i > 0; i--) {
if (scan_time_ & (1 << i)) {
scan_time_bits = i;
break;
}
}
scan_time_bits &= 0b111; // Scan time is bits 2:0
temp_byte = sleep_time_ | scan_time_bits;
this->write_byte(REG_KEY_CONFIG_1, temp_byte);
rows_ = (rows_ - 1) & 0b111; // 0 = off, 0b001 = 2 rows, 0b111 = 8 rows, etc.
cols_ = (cols_ - 1) & 0b111; // 0b000 = 1 column, ob111 = 8 columns, etc.
this->write_byte(REG_KEY_CONFIG_2, (rows_ << 3) | cols_);
}
uint16_t SX1509Component::read_key_data() {
uint16_t key_data = 0;
this->read_byte_16(REG_KEY_DATA_1, &key_data);
return (0xFFFF ^ key_data);
}
void SX1509Component::set_debounce_config_(uint8_t config_value) {
// First make sure clock is configured
uint8_t temp_byte = 0;
this->read_byte(REG_MISC, &temp_byte);
temp_byte |= (1 << 4); // Just default to no divider if not set
this->write_byte(REG_MISC, temp_byte);
this->read_byte(REG_CLOCK, &temp_byte);
temp_byte |= (1 << 6); // default to internal osc.
this->write_byte(REG_CLOCK, temp_byte);
config_value &= 0b111; // 3-bit value
this->write_byte(REG_DEBOUNCE_CONFIG, config_value);
}
void SX1509Component::set_debounce_time_(uint8_t time) {
uint8_t config_value = 0;
for (int i = 7; i >= 0; i--) {
if (time & (1 << i)) {
config_value = i + 1;
break;
}
}
config_value = clamp<uint8_t>(config_value, 0, 7);
set_debounce_config_(config_value);
}
void SX1509Component::set_debounce_enable_(uint8_t pin) {
uint16_t debounce_enable = 0;
this->read_byte_16(REG_DEBOUNCE_ENABLE_B, &debounce_enable);
debounce_enable |= (1 << pin);
this->write_byte_16(REG_DEBOUNCE_ENABLE_B, debounce_enable);
}
void SX1509Component::set_debounce_pin_(uint8_t pin) { set_debounce_enable_(pin); }
void SX1509Component::set_debounce_keypad_(uint8_t time, uint8_t num_rows, uint8_t num_cols) {
set_debounce_time_(time);
for (uint16_t i = 0; i < num_rows; i++)
set_debounce_pin_(i);
for (uint16_t i = 0; i < (8 + num_cols); i++)
set_debounce_pin_(i);
}
} // namespace sx1509
} // namespace esphome