esphome/esphome/components/toshiba/toshiba.cpp

714 lines
24 KiB
C++

#include "toshiba.h"
namespace esphome {
namespace toshiba {
struct RacPt1411hwruFanSpeed {
uint8_t code1;
uint8_t code2;
};
static const char *const TAG = "toshiba.climate";
// Timings for IR bits/data
const uint16_t TOSHIBA_HEADER_MARK = 4380;
const uint16_t TOSHIBA_HEADER_SPACE = 4370;
const uint16_t TOSHIBA_GAP_SPACE = 5480;
const uint16_t TOSHIBA_PACKET_SPACE = 10500;
const uint16_t TOSHIBA_BIT_MARK = 540;
const uint16_t TOSHIBA_ZERO_SPACE = 540;
const uint16_t TOSHIBA_ONE_SPACE = 1620;
const uint16_t TOSHIBA_CARRIER_FREQUENCY = 38000;
const uint8_t TOSHIBA_HEADER_LENGTH = 4;
// Generic Toshiba commands/flags
const uint8_t TOSHIBA_COMMAND_DEFAULT = 0x01;
const uint8_t TOSHIBA_COMMAND_TIMER = 0x02;
const uint8_t TOSHIBA_COMMAND_POWER = 0x08;
const uint8_t TOSHIBA_COMMAND_MOTION = 0x02;
const uint8_t TOSHIBA_MODE_AUTO = 0x00;
const uint8_t TOSHIBA_MODE_COOL = 0x01;
const uint8_t TOSHIBA_MODE_DRY = 0x02;
const uint8_t TOSHIBA_MODE_HEAT = 0x03;
const uint8_t TOSHIBA_MODE_FAN_ONLY = 0x04;
const uint8_t TOSHIBA_MODE_OFF = 0x07;
const uint8_t TOSHIBA_FAN_SPEED_AUTO = 0x00;
const uint8_t TOSHIBA_FAN_SPEED_QUIET = 0x20;
const uint8_t TOSHIBA_FAN_SPEED_1 = 0x40;
const uint8_t TOSHIBA_FAN_SPEED_2 = 0x60;
const uint8_t TOSHIBA_FAN_SPEED_3 = 0x80;
const uint8_t TOSHIBA_FAN_SPEED_4 = 0xa0;
const uint8_t TOSHIBA_FAN_SPEED_5 = 0xc0;
const uint8_t TOSHIBA_POWER_HIGH = 0x01;
const uint8_t TOSHIBA_POWER_ECO = 0x03;
const uint8_t TOSHIBA_MOTION_SWING = 0x04;
const uint8_t TOSHIBA_MOTION_FIX = 0x00;
// RAC-PT1411HWRU temperature code flag bits
const uint8_t RAC_PT1411HWRU_FLAG_FAH = 0x01;
const uint8_t RAC_PT1411HWRU_FLAG_FRAC = 0x20;
const uint8_t RAC_PT1411HWRU_FLAG_NEG = 0x10;
// RAC-PT1411HWRU temperature short code flags mask
const uint8_t RAC_PT1411HWRU_FLAG_MASK = 0x0F;
// RAC-PT1411HWRU Headers, Footers and such
const uint8_t RAC_PT1411HWRU_MESSAGE_HEADER0 = 0xB2;
const uint8_t RAC_PT1411HWRU_MESSAGE_HEADER1 = 0xD5;
const uint8_t RAC_PT1411HWRU_MESSAGE_LENGTH = 6;
// RAC-PT1411HWRU "Comfort Sense" feature bits
const uint8_t RAC_PT1411HWRU_CS_ENABLED = 0x40;
const uint8_t RAC_PT1411HWRU_CS_DATA = 0x80;
const uint8_t RAC_PT1411HWRU_CS_HEADER = 0xBA;
const uint8_t RAC_PT1411HWRU_CS_FOOTER_AUTO = 0x7A;
const uint8_t RAC_PT1411HWRU_CS_FOOTER_COOL = 0x72;
const uint8_t RAC_PT1411HWRU_CS_FOOTER_HEAT = 0x7E;
// RAC-PT1411HWRU Swing
const uint8_t RAC_PT1411HWRU_SWING_HEADER = 0xB9;
const std::vector<uint8_t> RAC_PT1411HWRU_SWING_VERTICAL{0xB9, 0x46, 0xF5, 0x0A, 0x04, 0xFB};
const std::vector<uint8_t> RAC_PT1411HWRU_SWING_OFF{0xB9, 0x46, 0xF5, 0x0A, 0x05, 0xFA};
// RAC-PT1411HWRU Fan speeds
const uint8_t RAC_PT1411HWRU_FAN_OFF = 0x7B;
constexpr RacPt1411hwruFanSpeed RAC_PT1411HWRU_FAN_AUTO{0xBF, 0x66};
constexpr RacPt1411hwruFanSpeed RAC_PT1411HWRU_FAN_LOW{0x9F, 0x28};
constexpr RacPt1411hwruFanSpeed RAC_PT1411HWRU_FAN_MED{0x5F, 0x3C};
constexpr RacPt1411hwruFanSpeed RAC_PT1411HWRU_FAN_HIGH{0x3F, 0x64};
// RAC-PT1411HWRU Fan speed for Auto and Dry climate modes
const RacPt1411hwruFanSpeed RAC_PT1411HWRU_NO_FAN{0x1F, 0x65};
// RAC-PT1411HWRU Modes
const uint8_t RAC_PT1411HWRU_MODE_AUTO = 0x08;
const uint8_t RAC_PT1411HWRU_MODE_COOL = 0x00;
const uint8_t RAC_PT1411HWRU_MODE_DRY = 0x04;
const uint8_t RAC_PT1411HWRU_MODE_FAN = 0x04;
const uint8_t RAC_PT1411HWRU_MODE_HEAT = 0x0C;
const uint8_t RAC_PT1411HWRU_MODE_OFF = 0x00;
// RAC-PT1411HWRU Fan-only "temperature"/system off
const uint8_t RAC_PT1411HWRU_TEMPERATURE_FAN_ONLY = 0x0E;
// RAC-PT1411HWRU temperature codes are not sequential; they instead follow a modified Gray code.
// Hence these look-up tables. In addition, the upper nibble is used here for additional
// "negative" and "fractional value" flags as required for some temperatures.
// RAC-PT1411HWRU °C Temperatures (short codes)
const std::vector<uint8_t> RAC_PT1411HWRU_TEMPERATURE_C{0x10, 0x00, 0x01, 0x03, 0x02, 0x06, 0x07, 0x05,
0x04, 0x0C, 0x0D, 0x09, 0x08, 0x0A, 0x0B};
// RAC-PT1411HWRU °F Temperatures (short codes)
const std::vector<uint8_t> RAC_PT1411HWRU_TEMPERATURE_F{0x10, 0x30, 0x00, 0x20, 0x01, 0x21, 0x03, 0x23, 0x02,
0x22, 0x06, 0x26, 0x07, 0x05, 0x25, 0x04, 0x24, 0x0C,
0x2C, 0x0D, 0x2D, 0x09, 0x08, 0x28, 0x0A, 0x2A, 0x0B};
void ToshibaClimate::setup() {
if (this->sensor_) {
this->sensor_->add_on_state_callback([this](float state) {
this->current_temperature = state;
this->transmit_rac_pt1411hwru_temp_();
// current temperature changed, publish state
this->publish_state();
});
this->current_temperature = this->sensor_->state;
} else
this->current_temperature = NAN;
// restore set points
auto restore = this->restore_state_();
if (restore.has_value()) {
restore->apply(this);
} else {
// restore from defaults
this->mode = climate::CLIMATE_MODE_OFF;
// initialize target temperature to some value so that it's not NAN
this->target_temperature =
roundf(clamp<float>(this->current_temperature, this->minimum_temperature_, this->maximum_temperature_));
this->fan_mode = climate::CLIMATE_FAN_AUTO;
this->swing_mode = climate::CLIMATE_SWING_OFF;
}
// Set supported modes & temperatures based on model
this->minimum_temperature_ = this->temperature_min_();
this->maximum_temperature_ = this->temperature_max_();
this->supports_dry_ = this->toshiba_supports_dry_();
this->supports_fan_only_ = this->toshiba_supports_fan_only_();
this->fan_modes_ = this->toshiba_fan_modes_();
this->swing_modes_ = this->toshiba_swing_modes_();
// Never send nan to HA
if (isnan(this->target_temperature))
this->target_temperature = 24;
}
void ToshibaClimate::transmit_state() {
if (this->model_ == MODEL_RAC_PT1411HWRU_C || this->model_ == MODEL_RAC_PT1411HWRU_F) {
transmit_rac_pt1411hwru_();
} else {
transmit_generic_();
}
}
void ToshibaClimate::transmit_generic_() {
uint8_t message[16] = {0};
uint8_t message_length = 9;
// Header
message[0] = 0xf2;
message[1] = 0x0d;
// Message length
message[2] = message_length - 6;
// First checksum
message[3] = message[0] ^ message[1] ^ message[2];
// Command
message[4] = TOSHIBA_COMMAND_DEFAULT;
// Temperature
uint8_t temperature = static_cast<uint8_t>(
clamp<float>(this->target_temperature, TOSHIBA_GENERIC_TEMP_C_MIN, TOSHIBA_GENERIC_TEMP_C_MAX));
message[5] = (temperature - static_cast<uint8_t>(TOSHIBA_GENERIC_TEMP_C_MIN)) << 4;
// Mode and fan
uint8_t mode;
switch (this->mode) {
case climate::CLIMATE_MODE_OFF:
mode = TOSHIBA_MODE_OFF;
break;
case climate::CLIMATE_MODE_HEAT:
mode = TOSHIBA_MODE_HEAT;
break;
case climate::CLIMATE_MODE_COOL:
mode = TOSHIBA_MODE_COOL;
break;
case climate::CLIMATE_MODE_HEAT_COOL:
default:
mode = TOSHIBA_MODE_AUTO;
}
message[6] |= mode | TOSHIBA_FAN_SPEED_AUTO;
// Zero
message[7] = 0x00;
// If timers bit in the command is set, two extra bytes are added here
// If power bit is set in the command, one extra byte is added here
// The last byte is the xor of all bytes from [4]
for (uint8_t i = 4; i < 8; i++) {
message[8] ^= message[i];
}
// Transmit
auto transmit = this->transmitter_->transmit();
auto data = transmit.get_data();
encode_(data, message, message_length, 1);
transmit.perform();
}
void ToshibaClimate::transmit_rac_pt1411hwru_() {
uint8_t code = 0, index = 0, message[RAC_PT1411HWRU_MESSAGE_LENGTH * 2] = {0};
float temperature =
clamp<float>(this->target_temperature, TOSHIBA_RAC_PT1411HWRU_TEMP_C_MIN, TOSHIBA_RAC_PT1411HWRU_TEMP_C_MAX);
float temp_adjd = temperature - TOSHIBA_RAC_PT1411HWRU_TEMP_C_MIN;
auto transmit = this->transmitter_->transmit();
auto data = transmit.get_data();
// Byte 0: Header upper (0xB2)
message[0] = RAC_PT1411HWRU_MESSAGE_HEADER0;
// Byte 1: Header lower (0x4D)
message[1] = ~message[0];
// Byte 2u: Fan speed
// Byte 2l: 1111 (on) or 1011 (off)
if (this->mode == climate::CLIMATE_MODE_OFF) {
message[2] = RAC_PT1411HWRU_FAN_OFF;
} else if ((this->mode == climate::CLIMATE_MODE_HEAT_COOL) || (this->mode == climate::CLIMATE_MODE_DRY)) {
message[2] = RAC_PT1411HWRU_NO_FAN.code1;
message[7] = RAC_PT1411HWRU_NO_FAN.code2;
} else {
switch (this->fan_mode.value()) {
case climate::CLIMATE_FAN_LOW:
message[2] = RAC_PT1411HWRU_FAN_LOW.code1;
message[7] = RAC_PT1411HWRU_FAN_LOW.code2;
break;
case climate::CLIMATE_FAN_MEDIUM:
message[2] = RAC_PT1411HWRU_FAN_MED.code1;
message[7] = RAC_PT1411HWRU_FAN_MED.code2;
break;
case climate::CLIMATE_FAN_HIGH:
message[2] = RAC_PT1411HWRU_FAN_HIGH.code1;
message[7] = RAC_PT1411HWRU_FAN_HIGH.code2;
break;
case climate::CLIMATE_FAN_AUTO:
default:
message[2] = RAC_PT1411HWRU_FAN_AUTO.code1;
message[7] = RAC_PT1411HWRU_FAN_AUTO.code2;
}
}
// Byte 3u: ~Fan speed
// Byte 3l: 0000 (on) or 0100 (off)
message[3] = ~message[2];
// Byte 4u: Temp
if (this->model_ == MODEL_RAC_PT1411HWRU_F) {
temperature = (temperature * 1.8) + 32;
temp_adjd = temperature - TOSHIBA_RAC_PT1411HWRU_TEMP_F_MIN;
}
index = static_cast<uint8_t>(roundf(temp_adjd));
if (this->model_ == MODEL_RAC_PT1411HWRU_F) {
code = RAC_PT1411HWRU_TEMPERATURE_F[index];
message[9] |= RAC_PT1411HWRU_FLAG_FAH;
} else {
code = RAC_PT1411HWRU_TEMPERATURE_C[index];
}
if ((this->mode == climate::CLIMATE_MODE_FAN_ONLY) || (this->mode == climate::CLIMATE_MODE_OFF)) {
code = RAC_PT1411HWRU_TEMPERATURE_FAN_ONLY;
}
if (code & RAC_PT1411HWRU_FLAG_FRAC) {
message[8] |= RAC_PT1411HWRU_FLAG_FRAC;
}
if (code & RAC_PT1411HWRU_FLAG_NEG) {
message[9] |= RAC_PT1411HWRU_FLAG_NEG;
}
message[4] = (code & RAC_PT1411HWRU_FLAG_MASK) << 4;
// Byte 4l: Mode
switch (this->mode) {
case climate::CLIMATE_MODE_OFF:
// zerooooo
break;
case climate::CLIMATE_MODE_HEAT:
message[4] |= RAC_PT1411HWRU_MODE_HEAT;
break;
case climate::CLIMATE_MODE_COOL:
message[4] |= RAC_PT1411HWRU_MODE_COOL;
break;
case climate::CLIMATE_MODE_DRY:
message[4] |= RAC_PT1411HWRU_MODE_DRY;
break;
case climate::CLIMATE_MODE_FAN_ONLY:
message[4] |= RAC_PT1411HWRU_MODE_FAN;
break;
case climate::CLIMATE_MODE_HEAT_COOL:
default:
message[4] |= RAC_PT1411HWRU_MODE_AUTO;
}
// Byte 5u: ~Temp
// Byte 5l: ~Mode
message[5] = ~message[4];
if (this->mode != climate::CLIMATE_MODE_OFF) {
// Byte 6: Header (0xD5)
message[6] = RAC_PT1411HWRU_MESSAGE_HEADER1;
// Byte 7: Fan speed part 2 (done above)
// Byte 8: 0x20 for °F frac, else 0 (done above)
// Byte 9: 0x10=NEG, 0x01=°F (done above)
// Byte 10: 0
// Byte 11: Checksum (bytes 6 through 10)
for (index = 6; index <= 10; index++) {
message[11] += message[index];
}
}
ESP_LOGV(TAG, "*** Generated codes: 0x%.2X%.2X%.2X%.2X%.2X%.2X 0x%.2X%.2X%.2X%.2X%.2X%.2X", message[0], message[1],
message[2], message[3], message[4], message[5], message[6], message[7], message[8], message[9], message[10],
message[11]);
// load first block of IR code and repeat it once
encode_(data, &message[0], RAC_PT1411HWRU_MESSAGE_LENGTH, 1);
// load second block of IR code, if present
if (message[6] != 0) {
encode_(data, &message[6], RAC_PT1411HWRU_MESSAGE_LENGTH, 0);
}
transmit.perform();
// Swing Mode
data->reset();
data->space(TOSHIBA_PACKET_SPACE);
switch (this->swing_mode) {
case climate::CLIMATE_SWING_VERTICAL:
encode_(data, &RAC_PT1411HWRU_SWING_VERTICAL[0], RAC_PT1411HWRU_MESSAGE_LENGTH, 1);
break;
case climate::CLIMATE_SWING_OFF:
default:
encode_(data, &RAC_PT1411HWRU_SWING_OFF[0], RAC_PT1411HWRU_MESSAGE_LENGTH, 1);
}
data->space(TOSHIBA_PACKET_SPACE);
transmit.perform();
if (this->sensor_) {
transmit_rac_pt1411hwru_temp_(true, false);
}
}
void ToshibaClimate::transmit_rac_pt1411hwru_temp_(const bool cs_state, const bool cs_send_update) {
if ((this->mode == climate::CLIMATE_MODE_HEAT) || (this->mode == climate::CLIMATE_MODE_COOL) ||
(this->mode == climate::CLIMATE_MODE_HEAT_COOL)) {
uint8_t message[RAC_PT1411HWRU_MESSAGE_LENGTH] = {0};
float temperature = clamp<float>(this->current_temperature, 0.0, TOSHIBA_RAC_PT1411HWRU_TEMP_C_MAX + 1);
auto transmit = this->transmitter_->transmit();
auto data = transmit.get_data();
// "Comfort Sense" feature notes
// IR Code: 0xBA45 xxXX yyYY
// xx: Temperature in °C
// Bit 6: feature state (on/off)
// Bit 7: message contains temperature data for feature (bit 6 must also be set)
// XX: Bitwise complement of xx
// yy: Mode: Auto=0x7A, Cool=0x72, Heat=0x7E
// YY: Bitwise complement of yy
//
// Byte 0: Header upper (0xBA)
message[0] = RAC_PT1411HWRU_CS_HEADER;
// Byte 1: Header lower (0x45)
message[1] = ~message[0];
// Byte 2: Temperature in °C
message[2] = static_cast<uint8_t>(roundf(temperature));
if (cs_send_update) {
message[2] |= RAC_PT1411HWRU_CS_ENABLED | RAC_PT1411HWRU_CS_DATA;
} else if (cs_state) {
message[2] |= RAC_PT1411HWRU_CS_ENABLED;
}
// Byte 3: Bitwise complement of byte 2
message[3] = ~message[2];
// Byte 4: Footer upper
switch (this->mode) {
case climate::CLIMATE_MODE_HEAT:
message[4] = RAC_PT1411HWRU_CS_FOOTER_HEAT;
break;
case climate::CLIMATE_MODE_COOL:
message[4] = RAC_PT1411HWRU_CS_FOOTER_COOL;
break;
case climate::CLIMATE_MODE_HEAT_COOL:
message[4] = RAC_PT1411HWRU_CS_FOOTER_AUTO;
default:
break;
}
// Byte 5: Footer lower/bitwise complement of byte 4
message[5] = ~message[4];
ESP_LOGV(TAG, "*** Generated code: 0x%.2X%.2X%.2X%.2X%.2X%.2X", message[0], message[1], message[2], message[3],
message[4], message[5]);
// load IR code and repeat it once
encode_(data, message, RAC_PT1411HWRU_MESSAGE_LENGTH, 1);
transmit.perform();
}
}
uint8_t ToshibaClimate::is_valid_rac_pt1411hwru_header_(const uint8_t *message) {
const std::vector<uint8_t> header{RAC_PT1411HWRU_MESSAGE_HEADER0, RAC_PT1411HWRU_CS_HEADER,
RAC_PT1411HWRU_SWING_HEADER};
for (auto i : header) {
if ((message[0] == i) && (message[1] == static_cast<uint8_t>(~i)))
return i;
}
if (message[0] == RAC_PT1411HWRU_MESSAGE_HEADER1)
return RAC_PT1411HWRU_MESSAGE_HEADER1;
return 0;
}
bool ToshibaClimate::compare_rac_pt1411hwru_packets_(const uint8_t *message1, const uint8_t *message2) {
for (uint8_t i = 0; i < RAC_PT1411HWRU_MESSAGE_LENGTH; i++) {
if (message1[i] != message2[i])
return false;
}
return true;
}
bool ToshibaClimate::is_valid_rac_pt1411hwru_message_(const uint8_t *message) {
uint8_t checksum = 0;
switch (is_valid_rac_pt1411hwru_header_(message)) {
case RAC_PT1411HWRU_MESSAGE_HEADER0:
case RAC_PT1411HWRU_CS_HEADER:
case RAC_PT1411HWRU_SWING_HEADER:
if (is_valid_rac_pt1411hwru_header_(message) && (message[2] == static_cast<uint8_t>(~message[3])) &&
(message[4] == static_cast<uint8_t>(~message[5]))) {
return true;
}
break;
case RAC_PT1411HWRU_MESSAGE_HEADER1:
for (uint8_t i = 0; i < RAC_PT1411HWRU_MESSAGE_LENGTH - 1; i++) {
checksum += message[i];
}
if (checksum == message[RAC_PT1411HWRU_MESSAGE_LENGTH - 1]) {
return true;
}
break;
default:
return false;
}
return false;
}
bool ToshibaClimate::on_receive(remote_base::RemoteReceiveData data) {
uint8_t message[18] = {0};
uint8_t message_length = TOSHIBA_HEADER_LENGTH, temperature_code = 0;
// Validate header
if (!data.expect_item(TOSHIBA_HEADER_MARK, TOSHIBA_HEADER_SPACE)) {
return false;
}
// Read incoming bits into buffer
if (!decode_(&data, message, message_length)) {
return false;
}
// Determine incoming message protocol version and/or length
if (is_valid_rac_pt1411hwru_header_(message)) {
// We already received four bytes
message_length = RAC_PT1411HWRU_MESSAGE_LENGTH - 4;
} else if ((message[0] ^ message[1] ^ message[2]) != message[3]) {
// Return false if first checksum was not valid
return false;
} else {
// First checksum was valid so continue receiving the remaining bits
message_length = message[2] + 2;
}
// Decode the remaining bytes
if (!decode_(&data, &message[4], message_length)) {
return false;
}
// If this is a RAC-PT1411HWRU message, we expect the first packet a second time and also possibly a third packet
if (is_valid_rac_pt1411hwru_header_(message)) {
// There is always a space between packets
if (!data.expect_item(TOSHIBA_BIT_MARK, TOSHIBA_GAP_SPACE)) {
return false;
}
// Validate header 2
if (!data.expect_item(TOSHIBA_HEADER_MARK, TOSHIBA_HEADER_SPACE)) {
return false;
}
if (!decode_(&data, &message[6], RAC_PT1411HWRU_MESSAGE_LENGTH)) {
return false;
}
// If this is a RAC-PT1411HWRU message, there may also be a third packet.
// We do not fail the receive if we don't get this; it isn't always present
if (data.expect_item(TOSHIBA_BIT_MARK, TOSHIBA_GAP_SPACE)) {
// Validate header 3
data.expect_item(TOSHIBA_HEADER_MARK, TOSHIBA_HEADER_SPACE);
if (decode_(&data, &message[12], RAC_PT1411HWRU_MESSAGE_LENGTH)) {
if (!is_valid_rac_pt1411hwru_message_(&message[12])) {
// If a third packet was received but the checksum is not valid, fail
return false;
}
}
}
if (!compare_rac_pt1411hwru_packets_(&message[0], &message[6])) {
// If the first two packets don't match each other, fail
return false;
}
if (!is_valid_rac_pt1411hwru_message_(&message[0])) {
// If the first packet isn't valid, fail
return false;
}
}
// Header has been verified, now determine protocol version and set the climate component properties
switch (is_valid_rac_pt1411hwru_header_(message)) {
// Power, temperature, mode, fan speed
case RAC_PT1411HWRU_MESSAGE_HEADER0:
// Get the mode
switch (message[4] & 0x0F) {
case RAC_PT1411HWRU_MODE_AUTO:
this->mode = climate::CLIMATE_MODE_HEAT_COOL;
break;
// case RAC_PT1411HWRU_MODE_OFF:
case RAC_PT1411HWRU_MODE_COOL:
if (((message[4] >> 4) == RAC_PT1411HWRU_TEMPERATURE_FAN_ONLY) && (message[2] == RAC_PT1411HWRU_FAN_OFF)) {
this->mode = climate::CLIMATE_MODE_OFF;
} else {
this->mode = climate::CLIMATE_MODE_COOL;
}
break;
// case RAC_PT1411HWRU_MODE_DRY:
case RAC_PT1411HWRU_MODE_FAN:
if ((message[4] >> 4) == RAC_PT1411HWRU_TEMPERATURE_FAN_ONLY)
this->mode = climate::CLIMATE_MODE_FAN_ONLY;
else
this->mode = climate::CLIMATE_MODE_DRY;
break;
case RAC_PT1411HWRU_MODE_HEAT:
this->mode = climate::CLIMATE_MODE_HEAT;
break;
default:
this->mode = climate::CLIMATE_MODE_OFF;
break;
}
// Get the fan speed/mode
switch (message[2]) {
case RAC_PT1411HWRU_FAN_LOW.code1:
this->fan_mode = climate::CLIMATE_FAN_LOW;
break;
case RAC_PT1411HWRU_FAN_MED.code1:
this->fan_mode = climate::CLIMATE_FAN_MEDIUM;
break;
case RAC_PT1411HWRU_FAN_HIGH.code1:
this->fan_mode = climate::CLIMATE_FAN_HIGH;
break;
case RAC_PT1411HWRU_FAN_AUTO.code1:
default:
this->fan_mode = climate::CLIMATE_FAN_AUTO;
break;
}
// Get the target temperature
if (is_valid_rac_pt1411hwru_message_(&message[12])) {
temperature_code =
(message[4] >> 4) | (message[14] & RAC_PT1411HWRU_FLAG_FRAC) | (message[15] & RAC_PT1411HWRU_FLAG_NEG);
if (message[15] & RAC_PT1411HWRU_FLAG_FAH) {
for (uint8_t i = 0; i < RAC_PT1411HWRU_TEMPERATURE_F.size(); i++) {
if (RAC_PT1411HWRU_TEMPERATURE_F[i] == temperature_code) {
this->target_temperature = static_cast<float>((i + TOSHIBA_RAC_PT1411HWRU_TEMP_F_MIN - 32) * 5) / 9;
}
}
} else {
for (uint8_t i = 0; i < RAC_PT1411HWRU_TEMPERATURE_C.size(); i++) {
if (RAC_PT1411HWRU_TEMPERATURE_C[i] == temperature_code) {
this->target_temperature = i + TOSHIBA_RAC_PT1411HWRU_TEMP_C_MIN;
}
}
}
}
break;
// "Comfort Sense" temperature packet
case RAC_PT1411HWRU_CS_HEADER:
// "Comfort Sense" feature notes
// IR Code: 0xBA45 xxXX yyYY
// xx: Temperature in °C
// Bit 6: feature state (on/off)
// Bit 7: message contains temperature data for feature (bit 6 must also be set)
// XX: Bitwise complement of xx
// yy: Mode: Auto: 7A
// Cool: 72
// Heat: 7E
// YY: Bitwise complement of yy
if ((message[2] & RAC_PT1411HWRU_CS_ENABLED) && (message[2] & RAC_PT1411HWRU_CS_DATA)) {
// Setting current_temperature this way allows the unit's remote to provide the temperature to HA
this->current_temperature = message[2] & ~(RAC_PT1411HWRU_CS_ENABLED | RAC_PT1411HWRU_CS_DATA);
}
break;
// Swing mode
case RAC_PT1411HWRU_SWING_HEADER:
if (message[4] == RAC_PT1411HWRU_SWING_VERTICAL[4]) {
this->swing_mode = climate::CLIMATE_SWING_VERTICAL;
} else {
this->swing_mode = climate::CLIMATE_SWING_OFF;
}
break;
// Generic (old) Toshiba packet
default:
uint8_t checksum = 0;
// Add back the length of the header (we pruned it above)
message_length += TOSHIBA_HEADER_LENGTH;
// Validate the second checksum before trusting any more of the message
for (uint8_t i = TOSHIBA_HEADER_LENGTH; i < message_length - 1; i++) {
checksum ^= message[i];
}
// Did our computed checksum and the provided checksum match?
if (checksum != message[message_length - 1]) {
return false;
}
// Check if this is a short swing/fix message
if (message[4] & TOSHIBA_COMMAND_MOTION) {
// Not supported yet
return false;
}
// Get the mode
switch (message[6] & 0x0F) {
case TOSHIBA_MODE_OFF:
this->mode = climate::CLIMATE_MODE_OFF;
break;
case TOSHIBA_MODE_COOL:
this->mode = climate::CLIMATE_MODE_COOL;
break;
case TOSHIBA_MODE_DRY:
this->mode = climate::CLIMATE_MODE_DRY;
break;
case TOSHIBA_MODE_FAN_ONLY:
this->mode = climate::CLIMATE_MODE_FAN_ONLY;
break;
case TOSHIBA_MODE_HEAT:
this->mode = climate::CLIMATE_MODE_HEAT;
break;
case TOSHIBA_MODE_AUTO:
default:
this->mode = climate::CLIMATE_MODE_HEAT_COOL;
}
// Get the target temperature
this->target_temperature = (message[5] >> 4) + TOSHIBA_GENERIC_TEMP_C_MIN;
}
this->publish_state();
return true;
}
void ToshibaClimate::encode_(remote_base::RemoteTransmitData *data, const uint8_t *message, const uint8_t nbytes,
const uint8_t repeat) {
data->set_carrier_frequency(TOSHIBA_CARRIER_FREQUENCY);
for (uint8_t copy = 0; copy <= repeat; copy++) {
data->item(TOSHIBA_HEADER_MARK, TOSHIBA_HEADER_SPACE);
for (uint8_t byte = 0; byte < nbytes; byte++) {
for (uint8_t bit = 0; bit < 8; bit++) {
data->mark(TOSHIBA_BIT_MARK);
if (message[byte] & (1 << (7 - bit))) {
data->space(TOSHIBA_ONE_SPACE);
} else {
data->space(TOSHIBA_ZERO_SPACE);
}
}
}
data->item(TOSHIBA_BIT_MARK, TOSHIBA_GAP_SPACE);
}
}
bool ToshibaClimate::decode_(remote_base::RemoteReceiveData *data, uint8_t *message, const uint8_t nbytes) {
for (uint8_t byte = 0; byte < nbytes; byte++) {
for (uint8_t bit = 0; bit < 8; bit++) {
if (data->expect_item(TOSHIBA_BIT_MARK, TOSHIBA_ONE_SPACE)) {
message[byte] |= 1 << (7 - bit);
} else if (data->expect_item(TOSHIBA_BIT_MARK, TOSHIBA_ZERO_SPACE)) {
message[byte] &= static_cast<uint8_t>(~(1 << (7 - bit)));
} else {
return false;
}
}
}
return true;
}
} // namespace toshiba
} // namespace esphome