esphome/esphome/components/daikin/daikin.cpp

305 lines
8.7 KiB
C++

#include "daikin.h"
#include "esphome/components/remote_base/remote_base.h"
namespace esphome {
namespace daikin {
static const char *const TAG = "daikin.climate";
void DaikinClimate::transmit_state() {
uint8_t remote_state[35] = {0x11, 0xDA, 0x27, 0x00, 0xC5, 0x00, 0x00, 0xD7, 0x11, 0xDA, 0x27, 0x00,
0x42, 0x49, 0x05, 0xA2, 0x11, 0xDA, 0x27, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x06, 0x60, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00};
remote_state[21] = this->operation_mode_();
remote_state[22] = this->temperature_();
uint16_t fan_speed = this->fan_speed_();
remote_state[24] = fan_speed >> 8;
remote_state[25] = fan_speed & 0xff;
remote_state[29] = this->powerful_quiet_preset_();
remote_state[34] = this->eco_preset_();
// Calculate checksum
for (int i = 16; i < 34; i++) {
remote_state[34] += remote_state[i];
}
auto transmit = this->transmitter_->transmit();
auto *data = transmit.get_data();
data->set_carrier_frequency(DAIKIN_IR_FREQUENCY);
data->mark(DAIKIN_HEADER_MARK);
data->space(DAIKIN_HEADER_SPACE);
for (int i = 0; i < 8; i++) {
for (uint8_t mask = 1; mask > 0; mask <<= 1) { // iterate through bit mask
data->mark(DAIKIN_BIT_MARK);
bool bit = remote_state[i] & mask;
data->space(bit ? DAIKIN_ONE_SPACE : DAIKIN_ZERO_SPACE);
}
}
data->mark(DAIKIN_BIT_MARK);
data->space(DAIKIN_MESSAGE_SPACE);
data->mark(DAIKIN_HEADER_MARK);
data->space(DAIKIN_HEADER_SPACE);
for (int i = 8; i < 16; i++) {
for (uint8_t mask = 1; mask > 0; mask <<= 1) { // iterate through bit mask
data->mark(DAIKIN_BIT_MARK);
bool bit = remote_state[i] & mask;
data->space(bit ? DAIKIN_ONE_SPACE : DAIKIN_ZERO_SPACE);
}
}
data->mark(DAIKIN_BIT_MARK);
data->space(DAIKIN_MESSAGE_SPACE);
data->mark(DAIKIN_HEADER_MARK);
data->space(DAIKIN_HEADER_SPACE);
for (int i = 16; i < 35; i++) {
for (uint8_t mask = 1; mask > 0; mask <<= 1) { // iterate through bit mask
data->mark(DAIKIN_BIT_MARK);
bool bit = remote_state[i] & mask;
data->space(bit ? DAIKIN_ONE_SPACE : DAIKIN_ZERO_SPACE);
}
}
data->mark(DAIKIN_BIT_MARK);
data->space(0);
transmit.perform();
}
uint8_t DaikinClimate::operation_mode_() {
uint8_t operating_mode = DAIKIN_MODE_ON;
switch (this->mode) {
case climate::CLIMATE_MODE_COOL:
operating_mode |= DAIKIN_MODE_COOL;
break;
case climate::CLIMATE_MODE_DRY:
operating_mode |= DAIKIN_MODE_DRY;
break;
case climate::CLIMATE_MODE_HEAT:
operating_mode |= DAIKIN_MODE_HEAT;
break;
case climate::CLIMATE_MODE_HEAT_COOL:
operating_mode |= DAIKIN_MODE_AUTO;
break;
case climate::CLIMATE_MODE_FAN_ONLY:
operating_mode |= DAIKIN_MODE_FAN;
break;
case climate::CLIMATE_MODE_OFF:
default:
operating_mode = DAIKIN_MODE_OFF;
break;
}
return operating_mode;
}
uint16_t DaikinClimate::fan_speed_() {
uint16_t fan_speed;
switch (this->fan_mode.value()) {
case climate::CLIMATE_FAN_LOW:
fan_speed = DAIKIN_FAN_SILENT << 8;
break;
case climate::CLIMATE_FAN_MEDIUM:
fan_speed = DAIKIN_FAN_3 << 8;
break;
case climate::CLIMATE_FAN_HIGH:
fan_speed = DAIKIN_FAN_5 << 8;
break;
case climate::CLIMATE_FAN_AUTO:
fan_speed = DAIKIN_FAN_AUTO << 8;
break;
default:
fan_speed = DAIKIN_FAN_AUTO << 8;
}
// If swing is enabled switch first 4 bits to 1111
switch (this->swing_mode) {
case climate::CLIMATE_SWING_VERTICAL:
fan_speed |= 0x0F00;
break;
case climate::CLIMATE_SWING_HORIZONTAL:
fan_speed |= 0x000F;
break;
case climate::CLIMATE_SWING_BOTH:
fan_speed |= 0x0F0F;
break;
default:
break;
}
return fan_speed;
}
uint8_t DaikinClimate::temperature_() {
// Force special temperatures depending on the mode
switch (this->mode) {
case climate::CLIMATE_MODE_FAN_ONLY:
return 0x32;
case climate::CLIMATE_MODE_HEAT_COOL:
case climate::CLIMATE_MODE_DRY:
return 0xc0;
default:
uint8_t temperature = (clamp<float>(this->target_temperature, DAIKIN_TEMP_MIN, DAIKIN_TEMP_MAX)) * 2;
return temperature;
}
}
uint8_t DaikinClimate::powerful_quiet_preset_() {
uint8_t powerful_quiet_preset = DAIKIN_PRESET_OFF;
if (this->preset.has_value()) {
if (this->preset == climate::CLIMATE_PRESET_BOOST) {
powerful_quiet_preset = DAIKIN_PRESET_POWERFUL_ON;
} else if (this->preset == climate::CLIMATE_PRESET_SLEEP) {
powerful_quiet_preset = DAIKIN_PRESET_QUIET_ON;
}
}
return powerful_quiet_preset;
}
uint8_t DaikinClimate::eco_preset_() {
uint8_t eco_preset = DAIKIN_PRESET_OFF;
if (this->preset.has_value()) {
if (this->preset == climate::CLIMATE_PRESET_ECO) {
eco_preset = DAIKIN_PRESET_ECONO_ON;
} else if (this->preset == climate::CLIMATE_PRESET_COMFORT) {
eco_preset = DAIKIN_PRESET_COMFORT_ON;
} else if (this->preset == climate::CLIMATE_PRESET_ACTIVITY) {
eco_preset = DAIKIN_PRESET_SENSOR_ON;
}
}
return eco_preset;
}
bool DaikinClimate::parse_state_frame_(const uint8_t frame[]) {
uint8_t checksum = 0;
for (int i = 0; i < (DAIKIN_STATE_FRAME_SIZE - 1); i++) {
checksum += frame[i];
}
if (frame[DAIKIN_STATE_FRAME_SIZE - 1] != checksum)
return false;
uint8_t mode = frame[5];
if (mode & DAIKIN_MODE_ON) {
switch (mode & 0xF0) {
case DAIKIN_MODE_COOL:
this->mode = climate::CLIMATE_MODE_COOL;
break;
case DAIKIN_MODE_DRY:
this->mode = climate::CLIMATE_MODE_DRY;
break;
case DAIKIN_MODE_HEAT:
this->mode = climate::CLIMATE_MODE_HEAT;
break;
case DAIKIN_MODE_AUTO:
this->mode = climate::CLIMATE_MODE_HEAT_COOL;
break;
case DAIKIN_MODE_FAN:
this->mode = climate::CLIMATE_MODE_FAN_ONLY;
break;
}
} else {
this->mode = climate::CLIMATE_MODE_OFF;
}
uint8_t temperature = frame[6];
if (!(temperature & 0xC0)) {
this->target_temperature = (float) temperature / 2.0f;
}
uint8_t fan_mode = frame[8];
uint8_t swing_mode = frame[9];
if (fan_mode & 0xF && swing_mode & 0xF) {
this->swing_mode = climate::CLIMATE_SWING_BOTH;
} else if (fan_mode & 0xF) {
this->swing_mode = climate::CLIMATE_SWING_VERTICAL;
} else if (swing_mode & 0xF) {
this->swing_mode = climate::CLIMATE_SWING_HORIZONTAL;
} else {
this->swing_mode = climate::CLIMATE_SWING_OFF;
}
switch (fan_mode & 0xF0) {
case DAIKIN_FAN_1:
case DAIKIN_FAN_2:
case DAIKIN_FAN_SILENT:
this->fan_mode = climate::CLIMATE_FAN_LOW;
break;
case DAIKIN_FAN_3:
this->fan_mode = climate::CLIMATE_FAN_MEDIUM;
break;
case DAIKIN_FAN_4:
case DAIKIN_FAN_5:
this->fan_mode = climate::CLIMATE_FAN_HIGH;
break;
case DAIKIN_FAN_AUTO:
this->fan_mode = climate::CLIMATE_FAN_AUTO;
break;
}
this->preset = climate::CLIMATE_PRESET_NONE;
uint8_t powerful_quiet_preset = frame[13];
uint8_t eco_preset = frame[16];
switch (powerful_quiet_preset) {
case DAIKIN_PRESET_POWERFUL_ON:
this->preset = climate::CLIMATE_PRESET_BOOST;
break;
case DAIKIN_PRESET_QUIET_ON:
this->preset = climate::CLIMATE_PRESET_SLEEP;
break;
}
switch (eco_preset) {
case DAIKIN_PRESET_COMFORT_ON:
this->preset = climate::CLIMATE_PRESET_COMFORT;
break;
case DAIKIN_PRESET_ECONO_ON:
this->preset = climate::CLIMATE_PRESET_ECO;
break;
case DAIKIN_PRESET_SENSOR_ON:
this->preset = climate::CLIMATE_PRESET_ACTIVITY;
break;
}
this->publish_state();
return true;
}
bool DaikinClimate::on_receive(remote_base::RemoteReceiveData data) {
uint8_t state_frame[DAIKIN_STATE_FRAME_SIZE] = {};
if (!data.expect_item(DAIKIN_HEADER_MARK, DAIKIN_HEADER_SPACE)) {
return false;
}
for (uint8_t pos = 0; pos < DAIKIN_STATE_FRAME_SIZE; pos++) {
uint8_t byte = 0;
for (int8_t bit = 0; bit < 8; bit++) {
if (data.expect_item(DAIKIN_BIT_MARK, DAIKIN_ONE_SPACE)) {
byte |= 1 << bit;
} else if (!data.expect_item(DAIKIN_BIT_MARK, DAIKIN_ZERO_SPACE)) {
return false;
}
}
state_frame[pos] = byte;
if (pos == 0) {
// frame header
if (byte != 0x11)
return false;
} else if (pos == 1) {
// frame header
if (byte != 0xDA)
return false;
} else if (pos == 2) {
// frame header
if (byte != 0x27)
return false;
} else if (pos == 3) { // NOLINT(bugprone-branch-clone)
// frame header
if (byte != 0x00)
return false;
} else if (pos == 4) {
// frame type
if (byte != 0x00)
return false;
}
}
return this->parse_state_frame_(state_frame);
}
} // namespace daikin
} // namespace esphome