esphome/esphome/components/ct_clamp/ct_clamp_sensor.h

54 lines
1.7 KiB
C++

#pragma once
#include "esphome/core/component.h"
#include "esphome/core/hal.h"
#include "esphome/components/sensor/sensor.h"
#include "esphome/components/voltage_sampler/voltage_sampler.h"
namespace esphome {
namespace ct_clamp {
class CTClampSensor : public sensor::Sensor, public PollingComponent {
public:
void update() override;
void loop() override;
void dump_config() override;
float get_setup_priority() const override {
// After the base sensor has been initialized
return setup_priority::DATA - 1.0f;
}
void set_sample_duration(uint32_t sample_duration) { sample_duration_ = sample_duration; }
void set_source(voltage_sampler::VoltageSampler *source) { source_ = source; }
protected:
/// High Frequency loop() requester used during sampling phase.
HighFrequencyLoopRequester high_freq_;
/// Duration in ms of the sampling phase.
uint32_t sample_duration_;
/// The sampling source to read values from.
voltage_sampler::VoltageSampler *source_;
/** The DC offset of the circuit.
*
* Diagram: https://learn.openenergymonitor.org/electricity-monitoring/ct-sensors/interface-with-arduino
*
* The current clamp only measures AC, so any DC component is an unwanted artifact from the
* sampling circuit. The AC component is essentially the same as the calculating the Standard-Deviation,
* which can be done by cumulating 3 values per sample:
* 1) Number of samples
* 2) Sum of samples
* 3) Sum of sample squared
* https://en.wikipedia.org/wiki/Root_mean_square
*/
float sample_sum_ = 0.0f;
float sample_squared_sum_ = 0.0f;
uint32_t num_samples_ = 0;
bool is_sampling_ = false;
};
} // namespace ct_clamp
} // namespace esphome