esphome/esphome/components/wifi/wifi_component_esp32_arduin...

783 lines
26 KiB
C++

#include "wifi_component.h"
#ifdef USE_ESP32_FRAMEWORK_ARDUINO
#include <esp_wifi.h>
#include <algorithm>
#include <utility>
#ifdef USE_WIFI_WPA2_EAP
#include <esp_wpa2.h>
#endif
#include "lwip/apps/sntp.h"
#include "lwip/dns.h"
#include "lwip/err.h"
#include "esphome/core/application.h"
#include "esphome/core/hal.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
#include "esphome/core/util.h"
namespace esphome {
namespace wifi {
static const char *const TAG = "wifi_esp32";
static bool s_sta_connecting = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
bool WiFiComponent::wifi_mode_(optional<bool> sta, optional<bool> ap) {
uint8_t current_mode = WiFiClass::getMode();
bool current_sta = current_mode & 0b01;
bool current_ap = current_mode & 0b10;
bool enable_sta = sta.value_or(current_sta);
bool enable_ap = ap.value_or(current_ap);
if (current_sta == enable_sta && current_ap == enable_ap)
return true;
if (enable_sta && !current_sta) {
ESP_LOGV(TAG, "Enabling STA.");
} else if (!enable_sta && current_sta) {
ESP_LOGV(TAG, "Disabling STA.");
}
if (enable_ap && !current_ap) {
ESP_LOGV(TAG, "Enabling AP.");
} else if (!enable_ap && current_ap) {
ESP_LOGV(TAG, "Disabling AP.");
}
uint8_t mode = 0;
if (enable_sta)
mode |= 0b01;
if (enable_ap)
mode |= 0b10;
bool ret = WiFiClass::mode(static_cast<wifi_mode_t>(mode));
if (!ret) {
ESP_LOGW(TAG, "Setting WiFi mode failed!");
}
return ret;
}
bool WiFiComponent::wifi_apply_output_power_(float output_power) {
int8_t val = static_cast<int8_t>(output_power * 4);
return esp_wifi_set_max_tx_power(val) == ESP_OK;
}
bool WiFiComponent::wifi_sta_pre_setup_() {
if (!this->wifi_mode_(true, {}))
return false;
WiFi.setAutoReconnect(false);
delay(10);
return true;
}
bool WiFiComponent::wifi_apply_power_save_() {
wifi_ps_type_t power_save;
switch (this->power_save_) {
case WIFI_POWER_SAVE_LIGHT:
power_save = WIFI_PS_MIN_MODEM;
break;
case WIFI_POWER_SAVE_HIGH:
power_save = WIFI_PS_MAX_MODEM;
break;
case WIFI_POWER_SAVE_NONE:
default:
power_save = WIFI_PS_NONE;
break;
}
return esp_wifi_set_ps(power_save) == ESP_OK;
}
bool WiFiComponent::wifi_sta_ip_config_(optional<ManualIP> manual_ip) {
// enable STA
if (!this->wifi_mode_(true, {}))
return false;
tcpip_adapter_dhcp_status_t dhcp_status;
tcpip_adapter_dhcpc_get_status(TCPIP_ADAPTER_IF_STA, &dhcp_status);
if (!manual_ip.has_value()) {
// lwIP starts the SNTP client if it gets an SNTP server from DHCP. We don't need the time, and more importantly,
// the built-in SNTP client has a memory leak in certain situations. Disable this feature.
// https://github.com/esphome/issues/issues/2299
sntp_servermode_dhcp(false);
// Use DHCP client
if (dhcp_status != TCPIP_ADAPTER_DHCP_STARTED) {
esp_err_t err = tcpip_adapter_dhcpc_start(TCPIP_ADAPTER_IF_STA);
if (err != ESP_OK) {
ESP_LOGV(TAG, "Starting DHCP client failed! %d", err);
}
return err == ESP_OK;
}
return true;
}
tcpip_adapter_ip_info_t info;
memset(&info, 0, sizeof(info));
info.ip.addr = static_cast<uint32_t>(manual_ip->static_ip);
info.gw.addr = static_cast<uint32_t>(manual_ip->gateway);
info.netmask.addr = static_cast<uint32_t>(manual_ip->subnet);
esp_err_t dhcp_stop_ret = tcpip_adapter_dhcpc_stop(TCPIP_ADAPTER_IF_STA);
if (dhcp_stop_ret != ESP_OK && dhcp_stop_ret != ESP_ERR_TCPIP_ADAPTER_DHCP_ALREADY_STOPPED) {
ESP_LOGV(TAG, "Stopping DHCP client failed! %s", esp_err_to_name(dhcp_stop_ret));
}
esp_err_t wifi_set_info_ret = tcpip_adapter_set_ip_info(TCPIP_ADAPTER_IF_STA, &info);
if (wifi_set_info_ret != ESP_OK) {
ESP_LOGV(TAG, "Setting manual IP info failed! %s", esp_err_to_name(wifi_set_info_ret));
}
ip_addr_t dns;
#if LWIP_IPV6
dns.type = IPADDR_TYPE_V4;
#endif
if (uint32_t(manual_ip->dns1) != 0) {
#if LWIP_IPV6
dns.u_addr.ip4.addr = static_cast<uint32_t>(manual_ip->dns1);
#else
dns.addr = static_cast<uint32_t>(manual_ip->dns1);
#endif
dns_setserver(0, &dns);
}
if (uint32_t(manual_ip->dns2) != 0) {
#if LWIP_IPV6
dns.u_addr.ip4.addr = static_cast<uint32_t>(manual_ip->dns2);
#else
dns.addr = static_cast<uint32_t>(manual_ip->dns2);
#endif
dns_setserver(1, &dns);
}
return true;
}
network::IPAddress WiFiComponent::wifi_sta_ip() {
if (!this->has_sta())
return {};
tcpip_adapter_ip_info_t ip;
tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_STA, &ip);
return {ip.ip.addr};
}
bool WiFiComponent::wifi_apply_hostname_() {
// setting is done in SYSTEM_EVENT_STA_START callback
return true;
}
bool WiFiComponent::wifi_sta_connect_(const WiFiAP &ap) {
// enable STA
if (!this->wifi_mode_(true, {}))
return false;
// https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_wifi.html#_CPPv417wifi_sta_config_t
wifi_config_t conf;
memset(&conf, 0, sizeof(conf));
strncpy(reinterpret_cast<char *>(conf.sta.ssid), ap.get_ssid().c_str(), sizeof(conf.sta.ssid));
strncpy(reinterpret_cast<char *>(conf.sta.password), ap.get_password().c_str(), sizeof(conf.sta.password));
// The weakest authmode to accept in the fast scan mode
if (ap.get_password().empty()) {
conf.sta.threshold.authmode = WIFI_AUTH_OPEN;
} else {
conf.sta.threshold.authmode = WIFI_AUTH_WPA_WPA2_PSK;
}
#ifdef USE_WIFI_WPA2_EAP
if (ap.get_eap().has_value()) {
conf.sta.threshold.authmode = WIFI_AUTH_WPA2_ENTERPRISE;
}
#endif
if (ap.get_bssid().has_value()) {
conf.sta.bssid_set = true;
memcpy(conf.sta.bssid, ap.get_bssid()->data(), 6);
} else {
conf.sta.bssid_set = false;
}
if (ap.get_channel().has_value()) {
conf.sta.channel = *ap.get_channel();
conf.sta.scan_method = WIFI_FAST_SCAN;
} else {
conf.sta.scan_method = WIFI_ALL_CHANNEL_SCAN;
}
// Listen interval for ESP32 station to receive beacon when WIFI_PS_MAX_MODEM is set.
// Units: AP beacon intervals. Defaults to 3 if set to 0.
conf.sta.listen_interval = 0;
#if ESP_IDF_VERSION_MAJOR >= 4
// Protected Management Frame
// Device will prefer to connect in PMF mode if other device also advertises PMF capability.
conf.sta.pmf_cfg.capable = true;
conf.sta.pmf_cfg.required = false;
#endif
// note, we do our own filtering
// The minimum rssi to accept in the fast scan mode
conf.sta.threshold.rssi = -127;
conf.sta.threshold.authmode = WIFI_AUTH_OPEN;
wifi_config_t current_conf;
esp_err_t err;
esp_wifi_get_config(WIFI_IF_STA, &current_conf);
if (memcmp(&current_conf, &conf, sizeof(wifi_config_t)) != 0) { // NOLINT
err = esp_wifi_disconnect();
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_disconnect failed! %d", err);
return false;
}
}
err = esp_wifi_set_config(WIFI_IF_STA, &conf);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_set_config failed! %d", err);
}
if (!this->wifi_sta_ip_config_(ap.get_manual_ip())) {
return false;
}
// setup enterprise authentication if required
#ifdef USE_WIFI_WPA2_EAP
if (ap.get_eap().has_value()) {
// note: all certificates and keys have to be null terminated. Lengths are appended by +1 to include \0.
EAPAuth eap = ap.get_eap().value();
err = esp_wifi_sta_wpa2_ent_set_identity((uint8_t *) eap.identity.c_str(), eap.identity.length());
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_identity failed! %d", err);
}
int ca_cert_len = strlen(eap.ca_cert);
int client_cert_len = strlen(eap.client_cert);
int client_key_len = strlen(eap.client_key);
if (ca_cert_len) {
err = esp_wifi_sta_wpa2_ent_set_ca_cert((uint8_t *) eap.ca_cert, ca_cert_len + 1);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_ca_cert failed! %d", err);
}
}
// workout what type of EAP this is
// validation is not required as the config tool has already validated it
if (client_cert_len && client_key_len) {
// if we have certs, this must be EAP-TLS
err = esp_wifi_sta_wpa2_ent_set_cert_key((uint8_t *) eap.client_cert, client_cert_len + 1,
(uint8_t *) eap.client_key, client_key_len + 1,
(uint8_t *) eap.password.c_str(), strlen(eap.password.c_str()));
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_cert_key failed! %d", err);
}
} else {
// in the absence of certs, assume this is username/password based
err = esp_wifi_sta_wpa2_ent_set_username((uint8_t *) eap.username.c_str(), eap.username.length());
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_username failed! %d", err);
}
err = esp_wifi_sta_wpa2_ent_set_password((uint8_t *) eap.password.c_str(), eap.password.length());
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_password failed! %d", err);
}
}
err = esp_wifi_sta_wpa2_ent_enable();
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_enable failed! %d", err);
}
}
#endif // USE_WIFI_WPA2_EAP
this->wifi_apply_hostname_();
s_sta_connecting = true;
err = esp_wifi_connect();
if (err != ESP_OK) {
ESP_LOGW(TAG, "esp_wifi_connect failed! %d", err);
return false;
}
return true;
}
const char *get_auth_mode_str(uint8_t mode) {
switch (mode) {
case WIFI_AUTH_OPEN:
return "OPEN";
case WIFI_AUTH_WEP:
return "WEP";
case WIFI_AUTH_WPA_PSK:
return "WPA PSK";
case WIFI_AUTH_WPA2_PSK:
return "WPA2 PSK";
case WIFI_AUTH_WPA_WPA2_PSK:
return "WPA/WPA2 PSK";
case WIFI_AUTH_WPA2_ENTERPRISE:
return "WPA2 Enterprise";
default:
return "UNKNOWN";
}
}
#if ESP_IDF_VERSION_MAJOR >= 4
using esphome_ip4_addr_t = esp_ip4_addr_t;
#else
using esphome_ip4_addr_t = ip4_addr_t;
#endif
std::string format_ip4_addr(const esphome_ip4_addr_t &ip) {
char buf[20];
sprintf(buf, "%u.%u.%u.%u", uint8_t(ip.addr >> 0), uint8_t(ip.addr >> 8), uint8_t(ip.addr >> 16),
uint8_t(ip.addr >> 24));
return buf;
}
const char *get_op_mode_str(uint8_t mode) {
switch (mode) {
case WIFI_OFF:
return "OFF";
case WIFI_STA:
return "STA";
case WIFI_AP:
return "AP";
case WIFI_AP_STA:
return "AP+STA";
default:
return "UNKNOWN";
}
}
const char *get_disconnect_reason_str(uint8_t reason) {
switch (reason) {
case WIFI_REASON_AUTH_EXPIRE:
return "Auth Expired";
case WIFI_REASON_AUTH_LEAVE:
return "Auth Leave";
case WIFI_REASON_ASSOC_EXPIRE:
return "Association Expired";
case WIFI_REASON_ASSOC_TOOMANY:
return "Too Many Associations";
case WIFI_REASON_NOT_AUTHED:
return "Not Authenticated";
case WIFI_REASON_NOT_ASSOCED:
return "Not Associated";
case WIFI_REASON_ASSOC_LEAVE:
return "Association Leave";
case WIFI_REASON_ASSOC_NOT_AUTHED:
return "Association not Authenticated";
case WIFI_REASON_DISASSOC_PWRCAP_BAD:
return "Disassociate Power Cap Bad";
case WIFI_REASON_DISASSOC_SUPCHAN_BAD:
return "Disassociate Supported Channel Bad";
case WIFI_REASON_IE_INVALID:
return "IE Invalid";
case WIFI_REASON_MIC_FAILURE:
return "Mic Failure";
case WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT:
return "4-Way Handshake Timeout";
case WIFI_REASON_GROUP_KEY_UPDATE_TIMEOUT:
return "Group Key Update Timeout";
case WIFI_REASON_IE_IN_4WAY_DIFFERS:
return "IE In 4-Way Handshake Differs";
case WIFI_REASON_GROUP_CIPHER_INVALID:
return "Group Cipher Invalid";
case WIFI_REASON_PAIRWISE_CIPHER_INVALID:
return "Pairwise Cipher Invalid";
case WIFI_REASON_AKMP_INVALID:
return "AKMP Invalid";
case WIFI_REASON_UNSUPP_RSN_IE_VERSION:
return "Unsupported RSN IE version";
case WIFI_REASON_INVALID_RSN_IE_CAP:
return "Invalid RSN IE Cap";
case WIFI_REASON_802_1X_AUTH_FAILED:
return "802.1x Authentication Failed";
case WIFI_REASON_CIPHER_SUITE_REJECTED:
return "Cipher Suite Rejected";
case WIFI_REASON_BEACON_TIMEOUT:
return "Beacon Timeout";
case WIFI_REASON_NO_AP_FOUND:
return "AP Not Found";
case WIFI_REASON_AUTH_FAIL:
return "Authentication Failed";
case WIFI_REASON_ASSOC_FAIL:
return "Association Failed";
case WIFI_REASON_HANDSHAKE_TIMEOUT:
return "Handshake Failed";
case WIFI_REASON_CONNECTION_FAIL:
return "Connection Failed";
case WIFI_REASON_UNSPECIFIED:
default:
return "Unspecified";
}
}
#if ESP_IDF_VERSION_MAJOR >= 4
#define ESPHOME_EVENT_ID_WIFI_READY ARDUINO_EVENT_WIFI_READY
#define ESPHOME_EVENT_ID_WIFI_SCAN_DONE ARDUINO_EVENT_WIFI_SCAN_DONE
#define ESPHOME_EVENT_ID_WIFI_STA_START ARDUINO_EVENT_WIFI_STA_START
#define ESPHOME_EVENT_ID_WIFI_STA_STOP ARDUINO_EVENT_WIFI_STA_STOP
#define ESPHOME_EVENT_ID_WIFI_STA_CONNECTED ARDUINO_EVENT_WIFI_STA_CONNECTED
#define ESPHOME_EVENT_ID_WIFI_STA_DISCONNECTED ARDUINO_EVENT_WIFI_STA_DISCONNECTED
#define ESPHOME_EVENT_ID_WIFI_STA_AUTHMODE_CHANGE ARDUINO_EVENT_WIFI_STA_AUTHMODE_CHANGE
#define ESPHOME_EVENT_ID_WIFI_STA_GOT_IP ARDUINO_EVENT_WIFI_STA_GOT_IP
#define ESPHOME_EVENT_ID_WIFI_STA_GOT_IP6 ARDUINO_EVENT_WIFI_STA_GOT_IP6
#define ESPHOME_EVENT_ID_WIFI_STA_LOST_IP ARDUINO_EVENT_WIFI_STA_LOST_IP
#define ESPHOME_EVENT_ID_WIFI_AP_START ARDUINO_EVENT_WIFI_AP_START
#define ESPHOME_EVENT_ID_WIFI_AP_STOP ARDUINO_EVENT_WIFI_AP_STOP
#define ESPHOME_EVENT_ID_WIFI_AP_STACONNECTED ARDUINO_EVENT_WIFI_AP_STACONNECTED
#define ESPHOME_EVENT_ID_WIFI_AP_STADISCONNECTED ARDUINO_EVENT_WIFI_AP_STADISCONNECTED
#define ESPHOME_EVENT_ID_WIFI_AP_STAIPASSIGNED ARDUINO_EVENT_WIFI_AP_STAIPASSIGNED
#define ESPHOME_EVENT_ID_WIFI_AP_PROBEREQRECVED ARDUINO_EVENT_WIFI_AP_PROBEREQRECVED
#define ESPHOME_EVENT_ID_WIFI_AP_GOT_IP6 ARDUINO_EVENT_WIFI_AP_GOT_IP6
using esphome_wifi_event_id_t = arduino_event_id_t;
using esphome_wifi_event_info_t = arduino_event_info_t;
#else // ESP_IDF_VERSION_MAJOR >= 4
#define ESPHOME_EVENT_ID_WIFI_READY SYSTEM_EVENT_WIFI_READY
#define ESPHOME_EVENT_ID_WIFI_SCAN_DONE SYSTEM_EVENT_SCAN_DONE
#define ESPHOME_EVENT_ID_WIFI_STA_START SYSTEM_EVENT_STA_START
#define ESPHOME_EVENT_ID_WIFI_STA_STOP SYSTEM_EVENT_STA_STOP
#define ESPHOME_EVENT_ID_WIFI_STA_CONNECTED SYSTEM_EVENT_STA_CONNECTED
#define ESPHOME_EVENT_ID_WIFI_STA_DISCONNECTED SYSTEM_EVENT_STA_DISCONNECTED
#define ESPHOME_EVENT_ID_WIFI_STA_AUTHMODE_CHANGE SYSTEM_EVENT_STA_AUTHMODE_CHANGE
#define ESPHOME_EVENT_ID_WIFI_STA_GOT_IP SYSTEM_EVENT_STA_GOT_IP
#define ESPHOME_EVENT_ID_WIFI_STA_LOST_IP SYSTEM_EVENT_STA_LOST_IP
#define ESPHOME_EVENT_ID_WIFI_AP_START SYSTEM_EVENT_AP_START
#define ESPHOME_EVENT_ID_WIFI_AP_STOP SYSTEM_EVENT_AP_STOP
#define ESPHOME_EVENT_ID_WIFI_AP_STACONNECTED SYSTEM_EVENT_AP_STACONNECTED
#define ESPHOME_EVENT_ID_WIFI_AP_STADISCONNECTED SYSTEM_EVENT_AP_STADISCONNECTED
#define ESPHOME_EVENT_ID_WIFI_AP_STAIPASSIGNED SYSTEM_EVENT_AP_STAIPASSIGNED
#define ESPHOME_EVENT_ID_WIFI_AP_PROBEREQRECVED SYSTEM_EVENT_AP_PROBEREQRECVED
using esphome_wifi_event_id_t = system_event_id_t;
using esphome_wifi_event_info_t = system_event_info_t;
#endif // !(ESP_IDF_VERSION_MAJOR >= 4)
void WiFiComponent::wifi_event_callback_(esphome_wifi_event_id_t event, esphome_wifi_event_info_t info) {
switch (event) {
case ESPHOME_EVENT_ID_WIFI_READY: {
ESP_LOGV(TAG, "Event: WiFi ready");
break;
}
case ESPHOME_EVENT_ID_WIFI_SCAN_DONE: {
#if ESP_IDF_VERSION_MAJOR >= 4
auto it = info.wifi_scan_done;
#else
auto it = info.scan_done;
#endif
ESP_LOGV(TAG, "Event: WiFi Scan Done status=%u number=%u scan_id=%u", it.status, it.number, it.scan_id);
this->wifi_scan_done_callback_();
break;
}
case ESPHOME_EVENT_ID_WIFI_STA_START: {
ESP_LOGV(TAG, "Event: WiFi STA start");
tcpip_adapter_set_hostname(TCPIP_ADAPTER_IF_STA, App.get_name().c_str());
break;
}
case ESPHOME_EVENT_ID_WIFI_STA_STOP: {
ESP_LOGV(TAG, "Event: WiFi STA stop");
break;
}
case ESPHOME_EVENT_ID_WIFI_STA_CONNECTED: {
#if ESP_IDF_VERSION_MAJOR >= 4
auto it = info.wifi_sta_connected;
#else
auto it = info.connected;
#endif
char buf[33];
memcpy(buf, it.ssid, it.ssid_len);
buf[it.ssid_len] = '\0';
ESP_LOGV(TAG, "Event: Connected ssid='%s' bssid=" LOG_SECRET("%s") " channel=%u, authmode=%s", buf,
format_mac_addr(it.bssid).c_str(), it.channel, get_auth_mode_str(it.authmode));
break;
}
case ESPHOME_EVENT_ID_WIFI_STA_DISCONNECTED: {
#if ESP_IDF_VERSION_MAJOR >= 4
auto it = info.wifi_sta_disconnected;
#else
auto it = info.disconnected;
#endif
char buf[33];
memcpy(buf, it.ssid, it.ssid_len);
buf[it.ssid_len] = '\0';
if (it.reason == WIFI_REASON_NO_AP_FOUND) {
ESP_LOGW(TAG, "Event: Disconnected ssid='%s' reason='Probe Request Unsuccessful'", buf);
} else {
ESP_LOGW(TAG, "Event: Disconnected ssid='%s' bssid=" LOG_SECRET("%s") " reason='%s'", buf,
format_mac_addr(it.bssid).c_str(), get_disconnect_reason_str(it.reason));
}
uint8_t reason = it.reason;
if (reason == WIFI_REASON_AUTH_EXPIRE || reason == WIFI_REASON_BEACON_TIMEOUT ||
reason == WIFI_REASON_NO_AP_FOUND || reason == WIFI_REASON_ASSOC_FAIL ||
reason == WIFI_REASON_HANDSHAKE_TIMEOUT) {
err_t err = esp_wifi_disconnect();
if (err != ESP_OK) {
ESP_LOGV(TAG, "Disconnect failed: %s", esp_err_to_name(err));
}
this->error_from_callback_ = true;
}
s_sta_connecting = false;
break;
}
case ESPHOME_EVENT_ID_WIFI_STA_AUTHMODE_CHANGE: {
#if ESP_IDF_VERSION_MAJOR >= 4
auto it = info.wifi_sta_authmode_change;
#else
auto it = info.auth_change;
#endif
ESP_LOGV(TAG, "Event: Authmode Change old=%s new=%s", get_auth_mode_str(it.old_mode),
get_auth_mode_str(it.new_mode));
// Mitigate CVE-2020-12638
// https://lbsfilm.at/blog/wpa2-authenticationmode-downgrade-in-espressif-microprocessors
if (it.old_mode != WIFI_AUTH_OPEN && it.new_mode == WIFI_AUTH_OPEN) {
ESP_LOGW(TAG, "Potential Authmode downgrade detected, disconnecting...");
// we can't call retry_connect() from this context, so disconnect immediately
// and notify main thread with error_from_callback_
err_t err = esp_wifi_disconnect();
if (err != ESP_OK) {
ESP_LOGW(TAG, "Disconnect failed: %s", esp_err_to_name(err));
}
this->error_from_callback_ = true;
}
break;
}
case ESPHOME_EVENT_ID_WIFI_STA_GOT_IP: {
auto it = info.got_ip.ip_info;
ESP_LOGV(TAG, "Event: Got IP static_ip=%s gateway=%s", format_ip4_addr(it.ip).c_str(),
format_ip4_addr(it.gw).c_str());
s_sta_connecting = false;
break;
}
case ESPHOME_EVENT_ID_WIFI_STA_LOST_IP: {
ESP_LOGV(TAG, "Event: Lost IP");
break;
}
case ESPHOME_EVENT_ID_WIFI_AP_START: {
ESP_LOGV(TAG, "Event: WiFi AP start");
break;
}
case ESPHOME_EVENT_ID_WIFI_AP_STOP: {
ESP_LOGV(TAG, "Event: WiFi AP stop");
break;
}
case ESPHOME_EVENT_ID_WIFI_AP_STACONNECTED: {
#if ESP_IDF_VERSION_MAJOR >= 4
auto it = info.wifi_sta_connected;
auto &mac = it.bssid;
#else
auto it = info.sta_connected;
auto &mac = it.mac;
#endif
ESP_LOGV(TAG, "Event: AP client connected MAC=%s", format_mac_addr(mac).c_str());
break;
}
case ESPHOME_EVENT_ID_WIFI_AP_STADISCONNECTED: {
#if ESP_IDF_VERSION_MAJOR >= 4
auto it = info.wifi_sta_disconnected;
auto &mac = it.bssid;
#else
auto it = info.sta_disconnected;
auto &mac = it.mac;
#endif
ESP_LOGV(TAG, "Event: AP client disconnected MAC=%s", format_mac_addr(mac).c_str());
break;
}
case ESPHOME_EVENT_ID_WIFI_AP_STAIPASSIGNED: {
ESP_LOGV(TAG, "Event: AP client assigned IP");
break;
}
case ESPHOME_EVENT_ID_WIFI_AP_PROBEREQRECVED: {
#if ESP_IDF_VERSION_MAJOR >= 4
auto it = info.wifi_ap_probereqrecved;
#else
auto it = info.ap_probereqrecved;
#endif
ESP_LOGVV(TAG, "Event: AP receive Probe Request MAC=%s RSSI=%d", format_mac_addr(it.mac).c_str(), it.rssi);
break;
}
default:
break;
}
}
void WiFiComponent::wifi_pre_setup_() {
auto f = std::bind(&WiFiComponent::wifi_event_callback_, this, std::placeholders::_1, std::placeholders::_2);
WiFi.onEvent(f);
WiFi.persistent(false);
// Make sure WiFi is in clean state before anything starts
this->wifi_mode_(false, false);
}
WiFiSTAConnectStatus WiFiComponent::wifi_sta_connect_status_() {
auto status = WiFiClass::status();
if (status == WL_CONNECTED) {
return WiFiSTAConnectStatus::CONNECTED;
} else if (status == WL_CONNECT_FAILED || status == WL_CONNECTION_LOST) {
return WiFiSTAConnectStatus::ERROR_CONNECT_FAILED;
} else if (status == WL_NO_SSID_AVAIL) {
return WiFiSTAConnectStatus::ERROR_NETWORK_NOT_FOUND;
} else if (s_sta_connecting) {
return WiFiSTAConnectStatus::CONNECTING;
}
return WiFiSTAConnectStatus::IDLE;
}
bool WiFiComponent::wifi_scan_start_(bool passive) {
// enable STA
if (!this->wifi_mode_(true, {}))
return false;
// need to use WiFi because of WiFiScanClass allocations :(
int16_t err = WiFi.scanNetworks(true, true, passive, 200);
if (err != WIFI_SCAN_RUNNING) {
ESP_LOGV(TAG, "WiFi.scanNetworks failed! %d", err);
return false;
}
return true;
}
void WiFiComponent::wifi_scan_done_callback_() {
this->scan_result_.clear();
int16_t num = WiFi.scanComplete();
if (num < 0)
return;
this->scan_result_.reserve(static_cast<unsigned int>(num));
for (int i = 0; i < num; i++) {
String ssid = WiFi.SSID(i);
wifi_auth_mode_t authmode = WiFi.encryptionType(i);
int32_t rssi = WiFi.RSSI(i);
uint8_t *bssid = WiFi.BSSID(i);
int32_t channel = WiFi.channel(i);
WiFiScanResult scan({bssid[0], bssid[1], bssid[2], bssid[3], bssid[4], bssid[5]}, std::string(ssid.c_str()),
channel, rssi, authmode != WIFI_AUTH_OPEN, ssid.length() == 0);
this->scan_result_.push_back(scan);
}
WiFi.scanDelete();
this->scan_done_ = true;
}
bool WiFiComponent::wifi_ap_ip_config_(optional<ManualIP> manual_ip) {
esp_err_t err;
// enable AP
if (!this->wifi_mode_({}, true))
return false;
tcpip_adapter_ip_info_t info;
memset(&info, 0, sizeof(info));
if (manual_ip.has_value()) {
info.ip.addr = static_cast<uint32_t>(manual_ip->static_ip);
info.gw.addr = static_cast<uint32_t>(manual_ip->gateway);
info.netmask.addr = static_cast<uint32_t>(manual_ip->subnet);
} else {
info.ip.addr = static_cast<uint32_t>(network::IPAddress(192, 168, 4, 1));
info.gw.addr = static_cast<uint32_t>(network::IPAddress(192, 168, 4, 1));
info.netmask.addr = static_cast<uint32_t>(network::IPAddress(255, 255, 255, 0));
}
tcpip_adapter_dhcp_status_t dhcp_status;
tcpip_adapter_dhcps_get_status(TCPIP_ADAPTER_IF_AP, &dhcp_status);
err = tcpip_adapter_dhcps_stop(TCPIP_ADAPTER_IF_AP);
if (err != ESP_OK) {
ESP_LOGV(TAG, "tcpip_adapter_dhcps_stop failed! %d", err);
return false;
}
err = tcpip_adapter_set_ip_info(TCPIP_ADAPTER_IF_AP, &info);
if (err != ESP_OK) {
ESP_LOGV(TAG, "tcpip_adapter_set_ip_info failed! %d", err);
return false;
}
dhcps_lease_t lease;
lease.enable = true;
network::IPAddress start_address = info.ip.addr;
start_address[3] += 99;
lease.start_ip.addr = static_cast<uint32_t>(start_address);
ESP_LOGV(TAG, "DHCP server IP lease start: %s", start_address.str().c_str());
start_address[3] += 100;
lease.end_ip.addr = static_cast<uint32_t>(start_address);
ESP_LOGV(TAG, "DHCP server IP lease end: %s", start_address.str().c_str());
err = tcpip_adapter_dhcps_option(TCPIP_ADAPTER_OP_SET, TCPIP_ADAPTER_REQUESTED_IP_ADDRESS, &lease, sizeof(lease));
if (err != ESP_OK) {
ESP_LOGV(TAG, "tcpip_adapter_dhcps_option failed! %d", err);
return false;
}
err = tcpip_adapter_dhcps_start(TCPIP_ADAPTER_IF_AP);
if (err != ESP_OK) {
ESP_LOGV(TAG, "tcpip_adapter_dhcps_start failed! %d", err);
return false;
}
return true;
}
bool WiFiComponent::wifi_start_ap_(const WiFiAP &ap) {
// enable AP
if (!this->wifi_mode_({}, true))
return false;
wifi_config_t conf;
memset(&conf, 0, sizeof(conf));
strncpy(reinterpret_cast<char *>(conf.ap.ssid), ap.get_ssid().c_str(), sizeof(conf.ap.ssid));
conf.ap.channel = ap.get_channel().value_or(1);
conf.ap.ssid_hidden = ap.get_ssid().size();
conf.ap.max_connection = 5;
conf.ap.beacon_interval = 100;
if (ap.get_password().empty()) {
conf.ap.authmode = WIFI_AUTH_OPEN;
*conf.ap.password = 0;
} else {
conf.ap.authmode = WIFI_AUTH_WPA2_PSK;
strncpy(reinterpret_cast<char *>(conf.ap.password), ap.get_password().c_str(), sizeof(conf.ap.ssid));
}
#if ESP_IDF_VERSION_MAJOR >= 4
// pairwise cipher of SoftAP, group cipher will be derived using this.
conf.ap.pairwise_cipher = WIFI_CIPHER_TYPE_CCMP;
#endif
esp_err_t err = esp_wifi_set_config(WIFI_IF_AP, &conf);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_set_config failed! %d", err);
return false;
}
yield();
if (!this->wifi_ap_ip_config_(ap.get_manual_ip())) {
ESP_LOGV(TAG, "wifi_ap_ip_config_ failed!");
return false;
}
return true;
}
network::IPAddress WiFiComponent::wifi_soft_ap_ip() {
tcpip_adapter_ip_info_t ip;
tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_AP, &ip);
return {ip.ip.addr};
}
bool WiFiComponent::wifi_disconnect_() { return esp_wifi_disconnect(); }
bssid_t WiFiComponent::wifi_bssid() {
bssid_t bssid{};
uint8_t *raw_bssid = WiFi.BSSID();
if (raw_bssid != nullptr) {
for (size_t i = 0; i < bssid.size(); i++)
bssid[i] = raw_bssid[i];
}
return bssid;
}
std::string WiFiComponent::wifi_ssid() { return WiFi.SSID().c_str(); }
int8_t WiFiComponent::wifi_rssi() { return WiFi.RSSI(); }
int32_t WiFiComponent::wifi_channel_() { return WiFi.channel(); }
network::IPAddress WiFiComponent::wifi_subnet_mask_() { return {WiFi.subnetMask()}; }
network::IPAddress WiFiComponent::wifi_gateway_ip_() { return {WiFi.gatewayIP()}; }
network::IPAddress WiFiComponent::wifi_dns_ip_(int num) { return {WiFi.dnsIP(num)}; }
void WiFiComponent::wifi_loop_() {}
} // namespace wifi
} // namespace esphome
#endif // USE_ESP32_FRAMEWORK_ARDUINO