esphome/esphome/components/wifi/wifi_component_esp_idf.cpp

934 lines
32 KiB
C++

#include "wifi_component.h"
#ifdef USE_ESP_IDF
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <freertos/event_groups.h>
#include <esp_system.h>
#include <esp_wifi.h>
#include <esp_wifi_types.h>
#include <esp_event.h>
#include <esp_netif.h>
#include <cinttypes>
#include <utility>
#include <algorithm>
#ifdef USE_WIFI_WPA2_EAP
#include <esp_wpa2.h>
#endif
#include "dhcpserver/dhcpserver.h"
#include "lwip/err.h"
#include "lwip/dns.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
#include "esphome/core/hal.h"
#include "esphome/core/application.h"
#include "esphome/core/util.h"
namespace esphome {
namespace wifi {
static const char *const TAG = "wifi_esp32";
static EventGroupHandle_t s_wifi_event_group; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static QueueHandle_t s_event_queue; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static esp_netif_t *s_sta_netif = nullptr; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static esp_netif_t *s_ap_netif = nullptr; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static bool s_sta_started = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static bool s_sta_connected = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static bool s_sta_got_ip = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static bool s_ap_started = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static bool s_sta_connect_not_found = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static bool s_sta_connect_error = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static bool s_sta_connecting = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static bool s_wifi_started = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
struct IDFWiFiEvent {
esp_event_base_t event_base;
int32_t event_id;
union {
wifi_event_sta_scan_done_t sta_scan_done;
wifi_event_sta_connected_t sta_connected;
wifi_event_sta_disconnected_t sta_disconnected;
wifi_event_sta_authmode_change_t sta_authmode_change;
wifi_event_ap_staconnected_t ap_staconnected;
wifi_event_ap_stadisconnected_t ap_stadisconnected;
wifi_event_ap_probe_req_rx_t ap_probe_req_rx;
wifi_event_bss_rssi_low_t bss_rssi_low;
ip_event_got_ip_t ip_got_ip;
#if LWIP_IPV6
ip_event_got_ip6_t ip_got_ip6;
#endif
ip_event_ap_staipassigned_t ip_ap_staipassigned;
} data;
};
// general design: event handler translates events and pushes them to a queue,
// events get processed in the main loop
void event_handler(void *arg, esp_event_base_t event_base, int32_t event_id, void *event_data) {
IDFWiFiEvent event;
memset(&event, 0, sizeof(IDFWiFiEvent));
event.event_base = event_base;
event.event_id = event_id;
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) { // NOLINT(bugprone-branch-clone)
// no data
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_STOP) { // NOLINT(bugprone-branch-clone)
// no data
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_AUTHMODE_CHANGE) {
memcpy(&event.data.sta_authmode_change, event_data, sizeof(wifi_event_sta_authmode_change_t));
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_CONNECTED) {
memcpy(&event.data.sta_connected, event_data, sizeof(wifi_event_sta_connected_t));
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
memcpy(&event.data.sta_disconnected, event_data, sizeof(wifi_event_sta_disconnected_t));
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
memcpy(&event.data.ip_got_ip, event_data, sizeof(ip_event_got_ip_t));
#if LWIP_IPV6
} else if (event_base == IP_EVENT && event_id == IP_EVENT_GOT_IP6) {
memcpy(&event.data.ip_got_ip6, event_data, sizeof(ip_event_got_ip6_t));
#endif
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_LOST_IP) { // NOLINT(bugprone-branch-clone)
// no data
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_SCAN_DONE) {
memcpy(&event.data.sta_scan_done, event_data, sizeof(wifi_event_sta_scan_done_t));
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_AP_START) { // NOLINT(bugprone-branch-clone)
// no data
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_AP_STOP) { // NOLINT(bugprone-branch-clone)
// no data
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_AP_PROBEREQRECVED) {
memcpy(&event.data.ap_probe_req_rx, event_data, sizeof(wifi_event_ap_probe_req_rx_t));
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_AP_STACONNECTED) {
memcpy(&event.data.ap_staconnected, event_data, sizeof(wifi_event_ap_staconnected_t));
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_AP_STADISCONNECTED) {
memcpy(&event.data.ap_stadisconnected, event_data, sizeof(wifi_event_ap_stadisconnected_t));
} else if (event_base == IP_EVENT && event_id == IP_EVENT_AP_STAIPASSIGNED) {
memcpy(&event.data.ip_ap_staipassigned, event_data, sizeof(ip_event_ap_staipassigned_t));
} else {
// did not match any event, don't send anything
return;
}
// copy to heap to keep queue object small
auto *to_send = new IDFWiFiEvent; // NOLINT(cppcoreguidelines-owning-memory)
memcpy(to_send, &event, sizeof(IDFWiFiEvent));
// don't block, we may miss events but the core can handle that
if (xQueueSend(s_event_queue, &to_send, 0L) != pdPASS) {
delete to_send; // NOLINT(cppcoreguidelines-owning-memory)
}
}
void WiFiComponent::wifi_pre_setup_() {
#ifdef USE_ESP32_IGNORE_EFUSE_MAC_CRC
uint8_t mac[6];
get_mac_address_raw(mac);
set_mac_address(mac);
ESP_LOGV(TAG, "Use EFuse MAC without checking CRC: %s", get_mac_address_pretty().c_str());
#endif
esp_err_t err = esp_netif_init();
if (err != ERR_OK) {
ESP_LOGE(TAG, "esp_netif_init failed: %s", esp_err_to_name(err));
return;
}
s_wifi_event_group = xEventGroupCreate();
if (s_wifi_event_group == nullptr) {
ESP_LOGE(TAG, "xEventGroupCreate failed");
return;
}
// NOLINTNEXTLINE(bugprone-sizeof-expression)
s_event_queue = xQueueCreate(64, sizeof(IDFWiFiEvent *));
if (s_event_queue == nullptr) {
ESP_LOGE(TAG, "xQueueCreate failed");
return;
}
err = esp_event_loop_create_default();
if (err != ERR_OK) {
ESP_LOGE(TAG, "esp_event_loop_create_default failed: %s", esp_err_to_name(err));
return;
}
esp_event_handler_instance_t instance_wifi_id, instance_ip_id;
err = esp_event_handler_instance_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, nullptr, &instance_wifi_id);
if (err != ERR_OK) {
ESP_LOGE(TAG, "esp_event_handler_instance_register failed: %s", esp_err_to_name(err));
return;
}
err = esp_event_handler_instance_register(IP_EVENT, ESP_EVENT_ANY_ID, &event_handler, nullptr, &instance_ip_id);
if (err != ERR_OK) {
ESP_LOGE(TAG, "esp_event_handler_instance_register failed: %s", esp_err_to_name(err));
return;
}
s_sta_netif = esp_netif_create_default_wifi_sta();
s_ap_netif = esp_netif_create_default_wifi_ap();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
// cfg.nvs_enable = false;
err = esp_wifi_init(&cfg);
if (err != ERR_OK) {
ESP_LOGE(TAG, "esp_wifi_init failed: %s", esp_err_to_name(err));
return;
}
err = esp_wifi_set_storage(WIFI_STORAGE_RAM);
if (err != ERR_OK) {
ESP_LOGE(TAG, "esp_wifi_set_storage failed: %s", esp_err_to_name(err));
return;
}
}
bool WiFiComponent::wifi_mode_(optional<bool> sta, optional<bool> ap) {
esp_err_t err;
wifi_mode_t current_mode = WIFI_MODE_NULL;
if (s_wifi_started) {
err = esp_wifi_get_mode(&current_mode);
if (err != ERR_OK) {
ESP_LOGW(TAG, "esp_wifi_get_mode failed: %s", esp_err_to_name(err));
return false;
}
}
bool current_sta = current_mode == WIFI_MODE_STA || current_mode == WIFI_MODE_APSTA;
bool current_ap = current_mode == WIFI_MODE_AP || current_mode == WIFI_MODE_APSTA;
bool set_sta = sta.has_value() ? *sta : current_sta;
bool set_ap = ap.has_value() ? *ap : current_ap;
wifi_mode_t set_mode;
if (set_sta && set_ap) {
set_mode = WIFI_MODE_APSTA;
} else if (set_sta && !set_ap) {
set_mode = WIFI_MODE_STA;
} else if (!set_sta && set_ap) {
set_mode = WIFI_MODE_AP;
} else {
set_mode = WIFI_MODE_NULL;
}
if (current_mode == set_mode)
return true;
if (set_sta && !current_sta) {
ESP_LOGV(TAG, "Enabling STA.");
} else if (!set_sta && current_sta) {
ESP_LOGV(TAG, "Disabling STA.");
}
if (set_ap && !current_ap) {
ESP_LOGV(TAG, "Enabling AP.");
} else if (!set_ap && current_ap) {
ESP_LOGV(TAG, "Disabling AP.");
}
if (set_mode == WIFI_MODE_NULL && s_wifi_started) {
err = esp_wifi_stop();
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_stop failed: %s", esp_err_to_name(err));
return false;
}
s_wifi_started = false;
return true;
}
err = esp_wifi_set_mode(set_mode);
if (err != ERR_OK) {
ESP_LOGW(TAG, "esp_wifi_set_mode failed: %s", esp_err_to_name(err));
return false;
}
if (set_mode != WIFI_MODE_NULL && !s_wifi_started) {
err = esp_wifi_start();
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_start failed: %s", esp_err_to_name(err));
return false;
}
s_wifi_started = true;
}
return true;
}
bool WiFiComponent::wifi_sta_pre_setup_() { return this->wifi_mode_(true, {}); }
bool WiFiComponent::wifi_apply_output_power_(float output_power) {
int8_t val = static_cast<int8_t>(output_power * 4);
return esp_wifi_set_max_tx_power(val) == ESP_OK;
}
bool WiFiComponent::wifi_apply_power_save_() {
wifi_ps_type_t power_save;
switch (this->power_save_) {
case WIFI_POWER_SAVE_LIGHT:
power_save = WIFI_PS_MIN_MODEM;
break;
case WIFI_POWER_SAVE_HIGH:
power_save = WIFI_PS_MAX_MODEM;
break;
case WIFI_POWER_SAVE_NONE:
default:
power_save = WIFI_PS_NONE;
break;
}
return esp_wifi_set_ps(power_save) == ESP_OK;
}
bool WiFiComponent::wifi_sta_connect_(const WiFiAP &ap) {
// enable STA
if (!this->wifi_mode_(true, {}))
return false;
// https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_wifi.html#_CPPv417wifi_sta_config_t
wifi_config_t conf;
memset(&conf, 0, sizeof(conf));
strncpy(reinterpret_cast<char *>(conf.sta.ssid), ap.get_ssid().c_str(), sizeof(conf.sta.ssid));
strncpy(reinterpret_cast<char *>(conf.sta.password), ap.get_password().c_str(), sizeof(conf.sta.password));
// The weakest authmode to accept in the fast scan mode
if (ap.get_password().empty()) {
conf.sta.threshold.authmode = WIFI_AUTH_OPEN;
} else {
conf.sta.threshold.authmode = WIFI_AUTH_WPA_WPA2_PSK;
}
#ifdef USE_WIFI_WPA2_EAP
if (ap.get_eap().has_value()) {
conf.sta.threshold.authmode = WIFI_AUTH_WPA2_ENTERPRISE;
}
#endif
#ifdef USE_WIFI_11KV_SUPPORT
conf.sta.btm_enabled = this->btm_;
conf.sta.rm_enabled = this->rrm_;
#endif
if (ap.get_bssid().has_value()) {
conf.sta.bssid_set = true;
memcpy(conf.sta.bssid, ap.get_bssid()->data(), 6);
} else {
conf.sta.bssid_set = false;
}
if (ap.get_channel().has_value()) {
conf.sta.channel = *ap.get_channel();
conf.sta.scan_method = WIFI_FAST_SCAN;
} else {
conf.sta.scan_method = WIFI_ALL_CHANNEL_SCAN;
}
// Listen interval for ESP32 station to receive beacon when WIFI_PS_MAX_MODEM is set.
// Units: AP beacon intervals. Defaults to 3 if set to 0.
conf.sta.listen_interval = 0;
#if ESP_IDF_VERSION_MAJOR >= 4
// Protected Management Frame
// Device will prefer to connect in PMF mode if other device also advertises PMF capability.
conf.sta.pmf_cfg.capable = true;
conf.sta.pmf_cfg.required = false;
#endif
// note, we do our own filtering
// The minimum rssi to accept in the fast scan mode
conf.sta.threshold.rssi = -127;
conf.sta.threshold.authmode = WIFI_AUTH_OPEN;
wifi_config_t current_conf;
esp_err_t err;
err = esp_wifi_get_config(WIFI_IF_STA, &current_conf);
if (err != ERR_OK) {
ESP_LOGW(TAG, "esp_wifi_get_config failed: %s", esp_err_to_name(err));
// can continue
}
if (memcmp(&current_conf, &conf, sizeof(wifi_config_t)) != 0) { // NOLINT
err = esp_wifi_disconnect();
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_disconnect failed: %s", esp_err_to_name(err));
return false;
}
}
err = esp_wifi_set_config(WIFI_IF_STA, &conf);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_set_config failed: %s", esp_err_to_name(err));
return false;
}
if (!this->wifi_sta_ip_config_(ap.get_manual_ip())) {
return false;
}
// setup enterprise authentication if required
#ifdef USE_WIFI_WPA2_EAP
if (ap.get_eap().has_value()) {
// note: all certificates and keys have to be null terminated. Lengths are appended by +1 to include \0.
EAPAuth eap = ap.get_eap().value();
err = esp_wifi_sta_wpa2_ent_set_identity((uint8_t *) eap.identity.c_str(), eap.identity.length());
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_identity failed! %d", err);
}
int ca_cert_len = strlen(eap.ca_cert);
int client_cert_len = strlen(eap.client_cert);
int client_key_len = strlen(eap.client_key);
if (ca_cert_len) {
err = esp_wifi_sta_wpa2_ent_set_ca_cert((uint8_t *) eap.ca_cert, ca_cert_len + 1);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_ca_cert failed! %d", err);
}
}
// workout what type of EAP this is
// validation is not required as the config tool has already validated it
if (client_cert_len && client_key_len) {
// if we have certs, this must be EAP-TLS
err = esp_wifi_sta_wpa2_ent_set_cert_key((uint8_t *) eap.client_cert, client_cert_len + 1,
(uint8_t *) eap.client_key, client_key_len + 1,
(uint8_t *) eap.password.c_str(), strlen(eap.password.c_str()));
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_cert_key failed! %d", err);
}
} else {
// in the absence of certs, assume this is username/password based
err = esp_wifi_sta_wpa2_ent_set_username((uint8_t *) eap.username.c_str(), eap.username.length());
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_username failed! %d", err);
}
err = esp_wifi_sta_wpa2_ent_set_password((uint8_t *) eap.password.c_str(), eap.password.length());
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_password failed! %d", err);
}
}
err = esp_wifi_sta_wpa2_ent_enable();
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_enable failed! %d", err);
}
}
#endif // USE_WIFI_WPA2_EAP
// Reset flags, do this _before_ wifi_station_connect as the callback method
// may be called from wifi_station_connect
s_sta_connecting = true;
s_sta_connected = false;
s_sta_got_ip = false;
s_sta_connect_error = false;
s_sta_connect_not_found = false;
err = esp_wifi_connect();
if (err != ESP_OK) {
ESP_LOGW(TAG, "esp_wifi_connect failed: %s", esp_err_to_name(err));
return false;
}
return true;
}
bool WiFiComponent::wifi_sta_ip_config_(optional<ManualIP> manual_ip) {
// enable STA
if (!this->wifi_mode_(true, {}))
return false;
esp_netif_dhcp_status_t dhcp_status;
esp_err_t err = esp_netif_dhcpc_get_status(s_sta_netif, &dhcp_status);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_dhcpc_get_status failed: %s", esp_err_to_name(err));
return false;
}
if (!manual_ip.has_value()) {
// No manual IP is set; use DHCP client
if (dhcp_status != ESP_NETIF_DHCP_STARTED) {
err = esp_netif_dhcpc_start(s_sta_netif);
if (err != ESP_OK) {
ESP_LOGV(TAG, "Starting DHCP client failed! %d", err);
}
return err == ESP_OK;
}
return true;
}
esp_netif_ip_info_t info; // struct of ip4_addr_t with ip, netmask, gw
info.ip.addr = static_cast<uint32_t>(manual_ip->static_ip);
info.gw.addr = static_cast<uint32_t>(manual_ip->gateway);
info.netmask.addr = static_cast<uint32_t>(manual_ip->subnet);
err = esp_netif_dhcpc_stop(s_sta_netif);
if (err != ESP_OK && err != ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED) {
ESP_LOGV(TAG, "esp_netif_dhcpc_stop failed: %s", esp_err_to_name(err));
return false;
}
err = esp_netif_set_ip_info(s_sta_netif, &info);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_set_ip_info failed: %s", esp_err_to_name(err));
return false;
}
esp_netif_dns_info_t dns;
if (uint32_t(manual_ip->dns1) != 0) {
dns.ip.u_addr.ip4.addr = static_cast<uint32_t>(manual_ip->dns1);
esp_netif_set_dns_info(s_sta_netif, ESP_NETIF_DNS_MAIN, &dns);
}
if (uint32_t(manual_ip->dns2) != 0) {
dns.ip.u_addr.ip4.addr = static_cast<uint32_t>(manual_ip->dns2);
esp_netif_set_dns_info(s_sta_netif, ESP_NETIF_DNS_BACKUP, &dns);
}
return true;
}
network::IPAddress WiFiComponent::wifi_sta_ip() {
if (!this->has_sta())
return {};
esp_netif_ip_info_t ip;
esp_err_t err = esp_netif_get_ip_info(s_sta_netif, &ip);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_get_ip_info failed: %s", esp_err_to_name(err));
return false;
}
return {ip.ip.addr};
}
bool WiFiComponent::wifi_apply_hostname_() {
// setting is done in SYSTEM_EVENT_STA_START callback
return true;
}
const char *get_auth_mode_str(uint8_t mode) {
switch (mode) {
case WIFI_AUTH_OPEN:
return "OPEN";
case WIFI_AUTH_WEP:
return "WEP";
case WIFI_AUTH_WPA_PSK:
return "WPA PSK";
case WIFI_AUTH_WPA2_PSK:
return "WPA2 PSK";
case WIFI_AUTH_WPA_WPA2_PSK:
return "WPA/WPA2 PSK";
case WIFI_AUTH_WPA2_ENTERPRISE:
return "WPA2 Enterprise";
case WIFI_AUTH_WPA3_PSK:
return "WPA3 PSK";
case WIFI_AUTH_WPA2_WPA3_PSK:
return "WPA2/WPA3 PSK";
case WIFI_AUTH_WAPI_PSK:
return "WAPI PSK";
default:
return "UNKNOWN";
}
}
std::string format_ip4_addr(const esp_ip4_addr_t &ip) { return str_snprintf(IPSTR, 15, IP2STR(&ip)); }
#if LWIP_IPV6
std::string format_ip6_addr(const esp_ip6_addr_t &ip) { return str_snprintf(IPV6STR, 39, IPV62STR(ip)); }
#endif
const char *get_disconnect_reason_str(uint8_t reason) {
switch (reason) {
case WIFI_REASON_AUTH_EXPIRE:
return "Auth Expired";
case WIFI_REASON_AUTH_LEAVE:
return "Auth Leave";
case WIFI_REASON_ASSOC_EXPIRE:
return "Association Expired";
case WIFI_REASON_ASSOC_TOOMANY:
return "Too Many Associations";
case WIFI_REASON_NOT_AUTHED:
return "Not Authenticated";
case WIFI_REASON_NOT_ASSOCED:
return "Not Associated";
case WIFI_REASON_ASSOC_LEAVE:
return "Association Leave";
case WIFI_REASON_ASSOC_NOT_AUTHED:
return "Association not Authenticated";
case WIFI_REASON_DISASSOC_PWRCAP_BAD:
return "Disassociate Power Cap Bad";
case WIFI_REASON_DISASSOC_SUPCHAN_BAD:
return "Disassociate Supported Channel Bad";
case WIFI_REASON_IE_INVALID:
return "IE Invalid";
case WIFI_REASON_MIC_FAILURE:
return "Mic Failure";
case WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT:
return "4-Way Handshake Timeout";
case WIFI_REASON_GROUP_KEY_UPDATE_TIMEOUT:
return "Group Key Update Timeout";
case WIFI_REASON_IE_IN_4WAY_DIFFERS:
return "IE In 4-Way Handshake Differs";
case WIFI_REASON_GROUP_CIPHER_INVALID:
return "Group Cipher Invalid";
case WIFI_REASON_PAIRWISE_CIPHER_INVALID:
return "Pairwise Cipher Invalid";
case WIFI_REASON_AKMP_INVALID:
return "AKMP Invalid";
case WIFI_REASON_UNSUPP_RSN_IE_VERSION:
return "Unsupported RSN IE version";
case WIFI_REASON_INVALID_RSN_IE_CAP:
return "Invalid RSN IE Cap";
case WIFI_REASON_802_1X_AUTH_FAILED:
return "802.1x Authentication Failed";
case WIFI_REASON_CIPHER_SUITE_REJECTED:
return "Cipher Suite Rejected";
case WIFI_REASON_BEACON_TIMEOUT:
return "Beacon Timeout";
case WIFI_REASON_NO_AP_FOUND:
return "AP Not Found";
case WIFI_REASON_AUTH_FAIL:
return "Authentication Failed";
case WIFI_REASON_ASSOC_FAIL:
return "Association Failed";
case WIFI_REASON_HANDSHAKE_TIMEOUT:
return "Handshake Failed";
case WIFI_REASON_CONNECTION_FAIL:
return "Connection Failed";
case WIFI_REASON_UNSPECIFIED:
default:
return "Unspecified";
}
}
void WiFiComponent::wifi_loop_() {
while (true) {
IDFWiFiEvent *data;
if (xQueueReceive(s_event_queue, &data, 0L) != pdTRUE) {
// no event ready
break;
}
// process event
wifi_process_event_(data);
delete data; // NOLINT(cppcoreguidelines-owning-memory)
}
}
void WiFiComponent::wifi_process_event_(IDFWiFiEvent *data) {
esp_err_t err;
if (data->event_base == WIFI_EVENT && data->event_id == WIFI_EVENT_STA_START) {
ESP_LOGV(TAG, "Event: WiFi STA start");
// apply hostname
err = esp_netif_set_hostname(s_sta_netif, App.get_name().c_str());
if (err != ERR_OK) {
ESP_LOGW(TAG, "esp_netif_set_hostname failed: %s", esp_err_to_name(err));
}
s_sta_started = true;
// re-apply power save mode
wifi_apply_power_save_();
} else if (data->event_base == WIFI_EVENT && data->event_id == WIFI_EVENT_STA_STOP) {
ESP_LOGV(TAG, "Event: WiFi STA stop");
s_sta_started = false;
} else if (data->event_base == WIFI_EVENT && data->event_id == WIFI_EVENT_STA_AUTHMODE_CHANGE) {
const auto &it = data->data.sta_authmode_change;
ESP_LOGV(TAG, "Event: Authmode Change old=%s new=%s", get_auth_mode_str(it.old_mode),
get_auth_mode_str(it.new_mode));
} else if (data->event_base == WIFI_EVENT && data->event_id == WIFI_EVENT_STA_CONNECTED) {
const auto &it = data->data.sta_connected;
char buf[33];
assert(it.ssid_len <= 32);
memcpy(buf, it.ssid, it.ssid_len);
buf[it.ssid_len] = '\0';
ESP_LOGV(TAG, "Event: Connected ssid='%s' bssid=" LOG_SECRET("%s") " channel=%u, authmode=%s", buf,
format_mac_addr(it.bssid).c_str(), it.channel, get_auth_mode_str(it.authmode));
s_sta_connected = true;
} else if (data->event_base == WIFI_EVENT && data->event_id == WIFI_EVENT_STA_DISCONNECTED) {
const auto &it = data->data.sta_disconnected;
char buf[33];
assert(it.ssid_len <= 32);
memcpy(buf, it.ssid, it.ssid_len);
buf[it.ssid_len] = '\0';
if (it.reason == WIFI_REASON_NO_AP_FOUND) {
ESP_LOGW(TAG, "Event: Disconnected ssid='%s' reason='Probe Request Unsuccessful'", buf);
s_sta_connect_not_found = true;
} else {
ESP_LOGW(TAG, "Event: Disconnected ssid='%s' bssid=" LOG_SECRET("%s") " reason='%s'", buf,
format_mac_addr(it.bssid).c_str(), get_disconnect_reason_str(it.reason));
s_sta_connect_error = true;
}
s_sta_connected = false;
s_sta_connecting = false;
error_from_callback_ = true;
} else if (data->event_base == IP_EVENT && data->event_id == IP_EVENT_STA_GOT_IP) {
const auto &it = data->data.ip_got_ip;
#if LWIP_IPV6_AUTOCONFIG
esp_netif_create_ip6_linklocal(s_sta_netif);
#endif
ESP_LOGV(TAG, "Event: Got IP static_ip=%s gateway=%s", format_ip4_addr(it.ip_info.ip).c_str(),
format_ip4_addr(it.ip_info.gw).c_str());
s_sta_got_ip = true;
#if LWIP_IPV6
} else if (data->event_base == IP_EVENT && data->event_id == IP_EVENT_GOT_IP6) {
const auto &it = data->data.ip_got_ip6;
ESP_LOGV(TAG, "Event: Got IPv6 address=%s", format_ip6_addr(it.ip6_info.ip).c_str());
#endif
} else if (data->event_base == IP_EVENT && data->event_id == IP_EVENT_STA_LOST_IP) {
ESP_LOGV(TAG, "Event: Lost IP");
s_sta_got_ip = false;
} else if (data->event_base == WIFI_EVENT && data->event_id == WIFI_EVENT_SCAN_DONE) {
const auto &it = data->data.sta_scan_done;
ESP_LOGV(TAG, "Event: WiFi Scan Done status=%" PRIu32 " number=%u scan_id=%u", it.status, it.number, it.scan_id);
scan_result_.clear();
this->scan_done_ = true;
if (it.status != 0) {
// scan error
return;
}
uint16_t number = it.number;
std::vector<wifi_ap_record_t> records(number);
err = esp_wifi_scan_get_ap_records(&number, records.data());
if (err != ESP_OK) {
ESP_LOGW(TAG, "esp_wifi_scan_get_ap_records failed: %s", esp_err_to_name(err));
return;
}
records.resize(number);
scan_result_.reserve(number);
for (int i = 0; i < number; i++) {
auto &record = records[i];
bssid_t bssid;
std::copy(record.bssid, record.bssid + 6, bssid.begin());
std::string ssid(reinterpret_cast<const char *>(record.ssid));
WiFiScanResult result(bssid, ssid, record.primary, record.rssi, record.authmode != WIFI_AUTH_OPEN, ssid.empty());
scan_result_.push_back(result);
}
} else if (data->event_base == WIFI_EVENT && data->event_id == WIFI_EVENT_AP_START) {
ESP_LOGV(TAG, "Event: WiFi AP start");
s_ap_started = true;
} else if (data->event_base == WIFI_EVENT && data->event_id == WIFI_EVENT_AP_STOP) {
ESP_LOGV(TAG, "Event: WiFi AP stop");
s_ap_started = false;
} else if (data->event_base == WIFI_EVENT && data->event_id == WIFI_EVENT_AP_PROBEREQRECVED) {
const auto &it = data->data.ap_probe_req_rx;
ESP_LOGVV(TAG, "Event: AP receive Probe Request MAC=%s RSSI=%d", format_mac_addr(it.mac).c_str(), it.rssi);
} else if (data->event_base == WIFI_EVENT && data->event_id == WIFI_EVENT_AP_STACONNECTED) {
const auto &it = data->data.ap_staconnected;
ESP_LOGV(TAG, "Event: AP client connected MAC=%s", format_mac_addr(it.mac).c_str());
} else if (data->event_base == WIFI_EVENT && data->event_id == WIFI_EVENT_AP_STADISCONNECTED) {
const auto &it = data->data.ap_stadisconnected;
ESP_LOGV(TAG, "Event: AP client disconnected MAC=%s", format_mac_addr(it.mac).c_str());
} else if (data->event_base == IP_EVENT && data->event_id == IP_EVENT_AP_STAIPASSIGNED) {
const auto &it = data->data.ip_ap_staipassigned;
ESP_LOGV(TAG, "Event: AP client assigned IP %s", format_ip4_addr(it.ip).c_str());
}
}
WiFiSTAConnectStatus WiFiComponent::wifi_sta_connect_status_() {
if (s_sta_connected && s_sta_got_ip) {
return WiFiSTAConnectStatus::CONNECTED;
}
if (s_sta_connect_error) {
return WiFiSTAConnectStatus::ERROR_CONNECT_FAILED;
}
if (s_sta_connect_not_found) {
return WiFiSTAConnectStatus::ERROR_NETWORK_NOT_FOUND;
}
if (s_sta_connecting) {
return WiFiSTAConnectStatus::CONNECTING;
}
return WiFiSTAConnectStatus::IDLE;
}
bool WiFiComponent::wifi_scan_start_(bool passive) {
// enable STA
if (!this->wifi_mode_(true, {}))
return false;
wifi_scan_config_t config{};
config.ssid = nullptr;
config.bssid = nullptr;
config.channel = 0;
config.show_hidden = true;
config.scan_type = passive ? WIFI_SCAN_TYPE_PASSIVE : WIFI_SCAN_TYPE_ACTIVE;
if (passive) {
config.scan_time.passive = 300;
} else {
config.scan_time.active.min = 100;
config.scan_time.active.max = 300;
}
esp_err_t err = esp_wifi_scan_start(&config, false);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_scan_start failed: %s", esp_err_to_name(err));
return false;
}
scan_done_ = false;
return true;
}
bool WiFiComponent::wifi_ap_ip_config_(optional<ManualIP> manual_ip) {
esp_err_t err;
// enable AP
if (!this->wifi_mode_({}, true))
return false;
esp_netif_ip_info_t info;
if (manual_ip.has_value()) {
info.ip.addr = static_cast<uint32_t>(manual_ip->static_ip);
info.gw.addr = static_cast<uint32_t>(manual_ip->gateway);
info.netmask.addr = static_cast<uint32_t>(manual_ip->subnet);
} else {
info.ip.addr = static_cast<uint32_t>(network::IPAddress(192, 168, 4, 1));
info.gw.addr = static_cast<uint32_t>(network::IPAddress(192, 168, 4, 1));
info.netmask.addr = static_cast<uint32_t>(network::IPAddress(255, 255, 255, 0));
}
err = esp_netif_dhcpc_stop(s_sta_netif);
if (err != ESP_OK && err != ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED) {
ESP_LOGV(TAG, "esp_netif_dhcpc_stop failed: %s", esp_err_to_name(err));
return false;
}
err = esp_netif_set_ip_info(s_sta_netif, &info);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_set_ip_info failed! %d", err);
return false;
}
dhcps_lease_t lease;
lease.enable = true;
network::IPAddress start_address = info.ip.addr;
start_address[3] += 99;
lease.start_ip.addr = static_cast<uint32_t>(start_address);
ESP_LOGV(TAG, "DHCP server IP lease start: %s", start_address.str().c_str());
start_address[3] += 100;
lease.end_ip.addr = static_cast<uint32_t>(start_address);
ESP_LOGV(TAG, "DHCP server IP lease end: %s", start_address.str().c_str());
err = esp_netif_dhcps_option(s_sta_netif, ESP_NETIF_OP_SET, ESP_NETIF_REQUESTED_IP_ADDRESS, &lease, sizeof(lease));
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_dhcps_option failed! %d", err);
return false;
}
err = esp_netif_dhcps_start(s_sta_netif);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_dhcps_start failed! %d", err);
return false;
}
return true;
}
bool WiFiComponent::wifi_start_ap_(const WiFiAP &ap) {
// enable AP
if (!this->wifi_mode_({}, true))
return false;
wifi_config_t conf;
memset(&conf, 0, sizeof(conf));
strncpy(reinterpret_cast<char *>(conf.ap.ssid), ap.get_ssid().c_str(), sizeof(conf.ap.ssid));
conf.ap.channel = ap.get_channel().value_or(1);
conf.ap.ssid_hidden = ap.get_ssid().size();
conf.ap.max_connection = 5;
conf.ap.beacon_interval = 100;
if (ap.get_password().empty()) {
conf.ap.authmode = WIFI_AUTH_OPEN;
*conf.ap.password = 0;
} else {
conf.ap.authmode = WIFI_AUTH_WPA2_PSK;
strncpy(reinterpret_cast<char *>(conf.ap.password), ap.get_password().c_str(), sizeof(conf.ap.password));
}
#if ESP_IDF_VERSION_MAJOR >= 4
// pairwise cipher of SoftAP, group cipher will be derived using this.
conf.ap.pairwise_cipher = WIFI_CIPHER_TYPE_CCMP;
#endif
esp_err_t err = esp_wifi_set_config(WIFI_IF_AP, &conf);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_set_config failed! %d", err);
return false;
}
if (!this->wifi_ap_ip_config_(ap.get_manual_ip())) {
ESP_LOGV(TAG, "wifi_ap_ip_config_ failed!");
return false;
}
return true;
}
network::IPAddress WiFiComponent::wifi_soft_ap_ip() {
esp_netif_ip_info_t ip;
esp_netif_get_ip_info(s_sta_netif, &ip);
return {ip.ip.addr};
}
bool WiFiComponent::wifi_disconnect_() { return esp_wifi_disconnect(); }
bssid_t WiFiComponent::wifi_bssid() {
wifi_ap_record_t info;
esp_err_t err = esp_wifi_sta_get_ap_info(&info);
bssid_t res{};
if (err != ESP_OK) {
ESP_LOGW(TAG, "esp_wifi_sta_get_ap_info failed: %s", esp_err_to_name(err));
return res;
}
std::copy(info.bssid, info.bssid + 6, res.begin());
return res;
}
std::string WiFiComponent::wifi_ssid() {
wifi_ap_record_t info{};
esp_err_t err = esp_wifi_sta_get_ap_info(&info);
if (err != ESP_OK) {
ESP_LOGW(TAG, "esp_wifi_sta_get_ap_info failed: %s", esp_err_to_name(err));
return "";
}
auto *ssid_s = reinterpret_cast<const char *>(info.ssid);
size_t len = strnlen(ssid_s, sizeof(info.ssid));
return {ssid_s, len};
}
int8_t WiFiComponent::wifi_rssi() {
wifi_ap_record_t info;
esp_err_t err = esp_wifi_sta_get_ap_info(&info);
if (err != ESP_OK) {
ESP_LOGW(TAG, "esp_wifi_sta_get_ap_info failed: %s", esp_err_to_name(err));
return 0;
}
return info.rssi;
}
int32_t WiFiComponent::wifi_channel_() {
uint8_t primary;
wifi_second_chan_t second;
esp_err_t err = esp_wifi_get_channel(&primary, &second);
if (err != ESP_OK) {
ESP_LOGW(TAG, "esp_wifi_get_channel failed: %s", esp_err_to_name(err));
return 0;
}
return primary;
}
network::IPAddress WiFiComponent::wifi_subnet_mask_() {
esp_netif_ip_info_t ip;
esp_err_t err = esp_netif_get_ip_info(s_sta_netif, &ip);
if (err != ESP_OK) {
ESP_LOGW(TAG, "esp_netif_get_ip_info failed: %s", esp_err_to_name(err));
return {};
}
return {ip.netmask.addr};
}
network::IPAddress WiFiComponent::wifi_gateway_ip_() {
esp_netif_ip_info_t ip;
esp_err_t err = esp_netif_get_ip_info(s_sta_netif, &ip);
if (err != ESP_OK) {
ESP_LOGW(TAG, "esp_netif_get_ip_info failed: %s", esp_err_to_name(err));
return {};
}
return {ip.gw.addr};
}
network::IPAddress WiFiComponent::wifi_dns_ip_(int num) {
const ip_addr_t *dns_ip = dns_getserver(num);
#if LWIP_IPV6
return {dns_ip->u_addr.ip4.addr};
#else
return {dns_ip->addr};
#endif
}
} // namespace wifi
} // namespace esphome
#endif