esphome/esphome/core/component.h

333 lines
11 KiB
C++

#pragma once
#include <cmath>
#include <cstdint>
#include <functional>
#include <string>
#include "esphome/core/optional.h"
namespace esphome {
/** Default setup priorities for components of different types.
*
* Components should return one of these setup priorities in get_setup_priority.
*/
namespace setup_priority {
/// For communication buses like i2c/spi
extern const float BUS;
/// For components that represent GPIO pins like PCF8573
extern const float IO;
/// For components that deal with hardware and are very important like GPIO switch
extern const float HARDWARE;
/// For components that import data from directly connected sensors like DHT.
extern const float DATA;
/// Alias for DATA (here for compatibility reasons)
extern const float HARDWARE_LATE;
/// For components that use data from sensors like displays
extern const float PROCESSOR;
extern const float BLUETOOTH;
extern const float AFTER_BLUETOOTH;
extern const float WIFI;
extern const float ETHERNET;
/// For components that should be initialized after WiFi and before API is connected.
extern const float BEFORE_CONNECTION;
/// For components that should be initialized after WiFi is connected.
extern const float AFTER_WIFI;
/// For components that should be initialized after a data connection (API/MQTT) is connected.
extern const float AFTER_CONNECTION;
/// For components that should be initialized at the very end of the setup process.
extern const float LATE;
} // namespace setup_priority
static const uint32_t SCHEDULER_DONT_RUN = 4294967295UL;
#define LOG_UPDATE_INTERVAL(this) \
if (this->get_update_interval() == SCHEDULER_DONT_RUN) { \
ESP_LOGCONFIG(TAG, " Update Interval: never"); \
} else if (this->get_update_interval() < 100) { \
ESP_LOGCONFIG(TAG, " Update Interval: %.3fs", this->get_update_interval() / 1000.0f); \
} else { \
ESP_LOGCONFIG(TAG, " Update Interval: %.1fs", this->get_update_interval() / 1000.0f); \
}
extern const uint32_t COMPONENT_STATE_MASK;
extern const uint32_t COMPONENT_STATE_CONSTRUCTION;
extern const uint32_t COMPONENT_STATE_SETUP;
extern const uint32_t COMPONENT_STATE_LOOP;
extern const uint32_t COMPONENT_STATE_FAILED;
extern const uint32_t STATUS_LED_MASK;
extern const uint32_t STATUS_LED_OK;
extern const uint32_t STATUS_LED_WARNING;
extern const uint32_t STATUS_LED_ERROR;
enum class RetryResult { DONE, RETRY };
class Component {
public:
/** Where the component's initialization should happen.
*
* Analogous to Arduino's setup(). This method is guaranteed to only be called once.
* Defaults to doing nothing.
*/
virtual void setup();
/** This method will be called repeatedly.
*
* Analogous to Arduino's loop(). setup() is guaranteed to be called before this.
* Defaults to doing nothing.
*/
virtual void loop();
virtual void dump_config();
/** priority of setup(). higher -> executed earlier
*
* Defaults to 0.
*
* @return The setup priority of this component
*/
virtual float get_setup_priority() const;
float get_actual_setup_priority() const;
void set_setup_priority(float priority);
/** priority of loop(). higher -> executed earlier
*
* Defaults to 0.
*
* @return The loop priority of this component
*/
virtual float get_loop_priority() const;
void call();
virtual void on_shutdown() {}
virtual void on_safe_shutdown() {}
uint32_t get_component_state() const;
/** Mark this component as failed. Any future timeouts/intervals/setup/loop will no longer be called.
*
* This might be useful if a component wants to indicate that a connection to its peripheral failed.
* For example, i2c based components can check if the remote device is responding and otherwise
* mark the component as failed. Eventually this will also enable smart status LEDs.
*/
virtual void mark_failed();
bool is_failed();
bool is_ready();
virtual bool can_proceed();
bool status_has_warning();
bool status_has_error();
void status_set_warning();
void status_set_error();
void status_clear_warning();
void status_clear_error();
void status_momentary_warning(const std::string &name, uint32_t length = 5000);
void status_momentary_error(const std::string &name, uint32_t length = 5000);
bool has_overridden_loop() const;
/** Set where this component was loaded from for some debug messages.
*
* This is set by the ESPHome core, and should not be called manually.
*/
void set_component_source(const char *source) { component_source_ = source; }
/** Get the integration where this component was declared as a string.
*
* Returns "<unknown>" if source not set
*/
const char *get_component_source() const;
protected:
friend class Application;
virtual void call_loop();
virtual void call_setup();
virtual void call_dump_config();
/** Set an interval function with a unique name. Empty name means no cancelling possible.
*
* This will call f every interval ms. Can be cancelled via CancelInterval().
* Similar to javascript's setInterval().
*
* IMPORTANT: Do not rely on this having correct timing. This is only called from
* loop() and therefore can be significantly delay. If you need exact timing please
* use hardware timers.
*
* @param name The identifier for this interval function.
* @param interval The interval in ms.
* @param f The function (or lambda) that should be called
*
* @see cancel_interval()
*/
void set_interval(const std::string &name, uint32_t interval, std::function<void()> &&f); // NOLINT
void set_interval(uint32_t interval, std::function<void()> &&f); // NOLINT
/** Cancel an interval function.
*
* @param name The identifier for this interval function.
* @return Whether an interval functions was deleted.
*/
bool cancel_interval(const std::string &name); // NOLINT
/** Set an retry function with a unique name. Empty name means no cancelling possible.
*
* This will call the retry function f on the next scheduler loop. f should return RetryResult::DONE if
* it is successful and no repeat is required. Otherwise, returning RetryResult::RETRY will call f
* again in the future.
*
* The first retry of f happens after `initial_wait_time` milliseconds. The delay between retries is
* increased by multiplying by `backoff_increase_factor` each time. If no backoff_increase_factor is
* supplied (default = 1.0), the wait time will stay constant.
*
* The retry function f needs to accept a single argument: the number of attempts remaining. On the
* final retry of f, this value will be 0.
*
* This retry function can also be cancelled by name via cancel_retry().
*
* IMPORTANT: Do not rely on this having correct timing. This is only called from
* loop() and therefore can be significantly delayed.
*
* REMARK: It is an error to supply a negative or zero `backoff_increase_factor`, and 1.0 will be used instead.
*
* REMARK: The interval between retries is stored into a `uint32_t`, so this doesn't behave correctly
* if `initial_wait_time * (backoff_increase_factor ** (max_attempts - 2))` overflows.
*
* @param name The identifier for this retry function.
* @param initial_wait_time The time in ms before f is called again
* @param max_attempts The maximum number of executions
* @param f The function (or lambda) that should be called
* @param backoff_increase_factor time between retries is multiplied by this factor on every retry after the first
* @see cancel_retry()
*/
void set_retry(const std::string &name, uint32_t initial_wait_time, uint8_t max_attempts, // NOLINT
std::function<RetryResult(uint8_t)> &&f, float backoff_increase_factor = 1.0f); // NOLINT
void set_retry(uint32_t initial_wait_time, uint8_t max_attempts, std::function<RetryResult(uint8_t)> &&f, // NOLINT
float backoff_increase_factor = 1.0f); // NOLINT
/** Cancel a retry function.
*
* @param name The identifier for this retry function.
* @return Whether a retry function was deleted.
*/
bool cancel_retry(const std::string &name); // NOLINT
/** Set a timeout function with a unique name.
*
* Similar to javascript's setTimeout(). Empty name means no cancelling possible.
*
* IMPORTANT: Do not rely on this having correct timing. This is only called from
* loop() and therefore can be significantly delay. If you need exact timing please
* use hardware timers.
*
* @param name The identifier for this timeout function.
* @param timeout The timeout in ms.
* @param f The function (or lambda) that should be called
*
* @see cancel_timeout()
*/
void set_timeout(const std::string &name, uint32_t timeout, std::function<void()> &&f); // NOLINT
void set_timeout(uint32_t timeout, std::function<void()> &&f); // NOLINT
/** Cancel a timeout function.
*
* @param name The identifier for this timeout function.
* @return Whether a timeout functions was deleted.
*/
bool cancel_timeout(const std::string &name); // NOLINT
/** Defer a callback to the next loop() call.
*
* If name is specified and a defer() object with the same name exists, the old one is first removed.
*
* @param name The name of the defer function.
* @param f The callback.
*/
void defer(const std::string &name, std::function<void()> &&f); // NOLINT
/// Defer a callback to the next loop() call.
void defer(std::function<void()> &&f); // NOLINT
/// Cancel a defer callback using the specified name, name must not be empty.
bool cancel_defer(const std::string &name); // NOLINT
uint32_t component_state_{0x0000}; ///< State of this component.
float setup_priority_override_{NAN};
const char *component_source_{nullptr};
};
/** This class simplifies creating components that periodically check a state.
*
* You basically just need to implement the update() function, it will be called every update_interval ms
* after startup. Note that this class cannot guarantee a correct timing, as it's not using timers, just
* a software polling feature with set_interval() from Component.
*/
class PollingComponent : public Component {
public:
PollingComponent() : PollingComponent(0) {}
/** Initialize this polling component with the given update interval in ms.
*
* @param update_interval The update interval in ms.
*/
explicit PollingComponent(uint32_t update_interval);
/** Manually set the update interval in ms for this polling object.
*
* Override this if you want to do some validation for the update interval.
*
* @param update_interval The update interval in ms.
*/
virtual void set_update_interval(uint32_t update_interval);
// ========== OVERRIDE METHODS ==========
// (You'll only need this when creating your own custom sensor)
virtual void update() = 0;
// ========== INTERNAL METHODS ==========
// (In most use cases you won't need these)
void call_setup() override;
/// Get the update interval in ms of this sensor
virtual uint32_t get_update_interval() const;
// Start the poller, used for component.suspend
void start_poller();
// Stop the poller, used for component.suspend
void stop_poller();
protected:
uint32_t update_interval_;
};
class WarnIfComponentBlockingGuard {
public:
WarnIfComponentBlockingGuard(Component *component);
~WarnIfComponentBlockingGuard();
protected:
uint32_t started_;
Component *component_;
};
} // namespace esphome