// Package denco provides fast URL router. package denco import ( "fmt" "sort" "strings" ) const ( // ParamCharacter is a special character for path parameter. ParamCharacter = ':' // WildcardCharacter is a special character for wildcard path parameter. WildcardCharacter = '*' // TerminationCharacter is a special character for end of path. TerminationCharacter = '#' // SeparatorCharacter separates path segments. SeparatorCharacter = '/' // MaxSize is max size of records and internal slice. MaxSize = (1 << 22) - 1 ) // Router represents a URL router. type Router struct { // SizeHint expects the maximum number of path parameters in records to Build. // SizeHint will be used to determine the capacity of the memory to allocate. // By default, SizeHint will be determined from given records to Build. SizeHint int static map[string]interface{} param *doubleArray } // New returns a new Router. func New() *Router { return &Router{ SizeHint: -1, static: make(map[string]interface{}), param: newDoubleArray(), } } // Lookup returns data and path parameters that associated with path. // params is a slice of the Param that arranged in the order in which parameters appeared. // e.g. when built routing path is "/path/to/:id/:name" and given path is "/path/to/1/alice". params order is [{"id": "1"}, {"name": "alice"}], not [{"name": "alice"}, {"id": "1"}]. func (rt *Router) Lookup(path string) (data interface{}, params Params, found bool) { if data, found := rt.static[path]; found { return data, nil, true } if len(rt.param.node) == 1 { return nil, nil, false } nd, params, found := rt.param.lookup(path, make([]Param, 0, rt.SizeHint), 1) if !found { return nil, nil, false } for i := 0; i < len(params); i++ { params[i].Name = nd.paramNames[i] } return nd.data, params, true } // Build builds URL router from records. func (rt *Router) Build(records []Record) error { statics, params := makeRecords(records) if len(params) > MaxSize { return fmt.Errorf("denco: too many records") } if rt.SizeHint < 0 { rt.SizeHint = 0 for _, p := range params { size := 0 for _, k := range p.Key { if k == ParamCharacter || k == WildcardCharacter { size++ } } if size > rt.SizeHint { rt.SizeHint = size } } } for _, r := range statics { rt.static[r.Key] = r.Value } if err := rt.param.build(params, 1, 0, make(map[int]struct{})); err != nil { return err } return nil } // Param represents name and value of path parameter. type Param struct { Name string Value string } // Params represents the name and value of path parameters. type Params []Param // Get gets the first value associated with the given name. // If there are no values associated with the key, Get returns "". func (ps Params) Get(name string) string { for _, p := range ps { if p.Name == name { return p.Value } } return "" } type doubleArray struct { bc []baseCheck node []*node } func newDoubleArray() *doubleArray { return &doubleArray{ bc: []baseCheck{0}, node: []*node{nil}, // A start index is adjusting to 1 because 0 will be used as a mark of non-existent node. } } // baseCheck contains BASE, CHECK and Extra flags. // From the top, 22bits of BASE, 2bits of Extra flags and 8bits of CHECK. // // BASE (22bit) | Extra flags (2bit) | CHECK (8bit) // |----------------------|--|--------| // 32 10 8 0 type baseCheck uint32 func (bc baseCheck) Base() int { return int(bc >> 10) } func (bc *baseCheck) SetBase(base int) { *bc |= baseCheck(base) << 10 } func (bc baseCheck) Check() byte { return byte(bc) } func (bc *baseCheck) SetCheck(check byte) { *bc |= baseCheck(check) } func (bc baseCheck) IsEmpty() bool { return bc&0xfffffcff == 0 } func (bc baseCheck) IsSingleParam() bool { return bc¶mTypeSingle == paramTypeSingle } func (bc baseCheck) IsWildcardParam() bool { return bc¶mTypeWildcard == paramTypeWildcard } func (bc baseCheck) IsAnyParam() bool { return bc¶mTypeAny != 0 } func (bc *baseCheck) SetSingleParam() { *bc |= (1 << 8) } func (bc *baseCheck) SetWildcardParam() { *bc |= (1 << 9) } const ( paramTypeSingle = 0x0100 paramTypeWildcard = 0x0200 paramTypeAny = 0x0300 ) func (da *doubleArray) lookup(path string, params []Param, idx int) (*node, []Param, bool) { indices := make([]uint64, 0, 1) for i := 0; i < len(path); i++ { if da.bc[idx].IsAnyParam() { indices = append(indices, (uint64(i)<<32)|(uint64(idx)&0xffffffff)) } c := path[i] if idx = nextIndex(da.bc[idx].Base(), c); idx >= len(da.bc) || da.bc[idx].Check() != c { goto BACKTRACKING } } if next := nextIndex(da.bc[idx].Base(), TerminationCharacter); next < len(da.bc) && da.bc[next].Check() == TerminationCharacter { return da.node[da.bc[next].Base()], params, true } BACKTRACKING: for j := len(indices) - 1; j >= 0; j-- { i, idx := int(indices[j]>>32), int(indices[j]&0xffffffff) if da.bc[idx].IsSingleParam() { idx := nextIndex(da.bc[idx].Base(), ParamCharacter) if idx >= len(da.bc) { break } next := NextSeparator(path, i) params := append(params, Param{Value: path[i:next]}) if nd, params, found := da.lookup(path[next:], params, idx); found { return nd, params, true } } if da.bc[idx].IsWildcardParam() { idx := nextIndex(da.bc[idx].Base(), WildcardCharacter) params := append(params, Param{Value: path[i:]}) return da.node[da.bc[idx].Base()], params, true } } return nil, nil, false } // build builds double-array from records. func (da *doubleArray) build(srcs []*record, idx, depth int, usedBase map[int]struct{}) error { sort.Stable(recordSlice(srcs)) base, siblings, leaf, err := da.arrange(srcs, idx, depth, usedBase) if err != nil { return err } if leaf != nil { nd, err := makeNode(leaf) if err != nil { return err } da.bc[idx].SetBase(len(da.node)) da.node = append(da.node, nd) } for _, sib := range siblings { da.setCheck(nextIndex(base, sib.c), sib.c) } for _, sib := range siblings { records := srcs[sib.start:sib.end] switch sib.c { case ParamCharacter: for _, r := range records { next := NextSeparator(r.Key, depth+1) name := r.Key[depth+1 : next] r.paramNames = append(r.paramNames, name) r.Key = r.Key[next:] } da.bc[idx].SetSingleParam() if err := da.build(records, nextIndex(base, sib.c), 0, usedBase); err != nil { return err } case WildcardCharacter: r := records[0] name := r.Key[depth+1 : len(r.Key)-1] r.paramNames = append(r.paramNames, name) r.Key = "" da.bc[idx].SetWildcardParam() if err := da.build(records, nextIndex(base, sib.c), 0, usedBase); err != nil { return err } default: if err := da.build(records, nextIndex(base, sib.c), depth+1, usedBase); err != nil { return err } } } return nil } // setBase sets BASE. func (da *doubleArray) setBase(i, base int) { da.bc[i].SetBase(base) } // setCheck sets CHECK. func (da *doubleArray) setCheck(i int, check byte) { da.bc[i].SetCheck(check) } // findEmptyIndex returns an index of unused BASE/CHECK node. func (da *doubleArray) findEmptyIndex(start int) int { i := start for ; i < len(da.bc); i++ { if da.bc[i].IsEmpty() { break } } return i } // findBase returns good BASE. func (da *doubleArray) findBase(siblings []sibling, start int, usedBase map[int]struct{}) (base int) { for idx, firstChar := start+1, siblings[0].c; ; idx = da.findEmptyIndex(idx + 1) { base = nextIndex(idx, firstChar) if _, used := usedBase[base]; used { continue } i := 0 for ; i < len(siblings); i++ { next := nextIndex(base, siblings[i].c) if len(da.bc) <= next { da.bc = append(da.bc, make([]baseCheck, next-len(da.bc)+1)...) } if !da.bc[next].IsEmpty() { break } } if i == len(siblings) { break } } usedBase[base] = struct{}{} return base } func (da *doubleArray) arrange(records []*record, idx, depth int, usedBase map[int]struct{}) (base int, siblings []sibling, leaf *record, err error) { siblings, leaf, err = makeSiblings(records, depth) if err != nil { return -1, nil, nil, err } if len(siblings) < 1 { return -1, nil, leaf, nil } base = da.findBase(siblings, idx, usedBase) if base > MaxSize { return -1, nil, nil, fmt.Errorf("denco: too many elements of internal slice") } da.setBase(idx, base) return base, siblings, leaf, err } // node represents a node of Double-Array. type node struct { data interface{} // Names of path parameters. paramNames []string } // makeNode returns a new node from record. func makeNode(r *record) (*node, error) { dups := make(map[string]bool) for _, name := range r.paramNames { if dups[name] { return nil, fmt.Errorf("denco: path parameter `%v' is duplicated in the key `%v'", name, r.Key) } dups[name] = true } return &node{data: r.Value, paramNames: r.paramNames}, nil } // sibling represents an intermediate data of build for Double-Array. type sibling struct { // An index of start of duplicated characters. start int // An index of end of duplicated characters. end int // A character of sibling. c byte } // nextIndex returns a next index of array of BASE/CHECK. func nextIndex(base int, c byte) int { return base ^ int(c) } // makeSiblings returns slice of sibling. func makeSiblings(records []*record, depth int) (sib []sibling, leaf *record, err error) { var ( pc byte n int ) for i, r := range records { if len(r.Key) <= depth { leaf = r continue } c := r.Key[depth] switch { case pc < c: sib = append(sib, sibling{start: i, c: c}) case pc == c: continue default: return nil, nil, fmt.Errorf("denco: BUG: routing table hasn't been sorted") } if n > 0 { sib[n-1].end = i } pc = c n++ } if n == 0 { return nil, leaf, nil } sib[n-1].end = len(records) return sib, leaf, nil } // Record represents a record data for router construction. type Record struct { // Key for router construction. Key string // Result value for Key. Value interface{} } // NewRecord returns a new Record. func NewRecord(key string, value interface{}) Record { return Record{ Key: key, Value: value, } } // record represents a record that use to build the Double-Array. type record struct { Record paramNames []string } // makeRecords returns the records that use to build Double-Arrays. func makeRecords(srcs []Record) (statics, params []*record) { termChar := string(TerminationCharacter) paramPrefix := string(SeparatorCharacter) + string(ParamCharacter) wildcardPrefix := string(SeparatorCharacter) + string(WildcardCharacter) for _, r := range srcs { if strings.Contains(r.Key, paramPrefix) || strings.Contains(r.Key, wildcardPrefix) { r.Key += termChar params = append(params, &record{Record: r}) } else { statics = append(statics, &record{Record: r}) } } return statics, params } // recordSlice represents a slice of Record for sort and implements the sort.Interface. type recordSlice []*record // Len implements the sort.Interface.Len. func (rs recordSlice) Len() int { return len(rs) } // Less implements the sort.Interface.Less. func (rs recordSlice) Less(i, j int) bool { return rs[i].Key < rs[j].Key } // Swap implements the sort.Interface.Swap. func (rs recordSlice) Swap(i, j int) { rs[i], rs[j] = rs[j], rs[i] }