CloverBootloader/UefiCpuPkg/Library/MpInitLib/Microcode.c

682 lines
25 KiB
C
Raw Normal View History

/** @file
Implementation of loading microcode on processors.
Copyright (c) 2015 - 2020, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "MpLib.h"
/**
Get microcode update signature of currently loaded microcode update.
@return Microcode signature.
**/
UINT32
GetCurrentMicrocodeSignature (
VOID
)
{
MSR_IA32_BIOS_SIGN_ID_REGISTER BiosSignIdMsr;
AsmWriteMsr64 (MSR_IA32_BIOS_SIGN_ID, 0);
AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, NULL);
BiosSignIdMsr.Uint64 = AsmReadMsr64 (MSR_IA32_BIOS_SIGN_ID);
return BiosSignIdMsr.Bits.MicrocodeUpdateSignature;
}
/**
Detect whether specified processor can find matching microcode patch and load it.
Microcode Payload as the following format:
+----------------------------------------+------------------+
| CPU_MICROCODE_HEADER | |
+----------------------------------------+ CheckSum Part1 |
| Microcode Binary | |
+----------------------------------------+------------------+
| CPU_MICROCODE_EXTENDED_TABLE_HEADER | |
+----------------------------------------+ CheckSum Part2 |
| CPU_MICROCODE_EXTENDED_TABLE | |
| ... | |
+----------------------------------------+------------------+
There may by multiple CPU_MICROCODE_EXTENDED_TABLE in this format.
The count of CPU_MICROCODE_EXTENDED_TABLE is indicated by ExtendedSignatureCount
of CPU_MICROCODE_EXTENDED_TABLE_HEADER structure.
When we are trying to verify the CheckSum32 with extended table.
We should use the fields of exnteded table to replace the corresponding
fields in CPU_MICROCODE_HEADER structure, and recalculate the
CheckSum32 with CPU_MICROCODE_HEADER + Microcode Binary. We named
it as CheckSum Part3.
The CheckSum Part2 is used to verify the CPU_MICROCODE_EXTENDED_TABLE_HEADER
and CPU_MICROCODE_EXTENDED_TABLE parts. We should make sure CheckSum Part2
is correct before we are going to verify each CPU_MICROCODE_EXTENDED_TABLE.
Only ProcessorSignature, ProcessorFlag and CheckSum are different between
CheckSum Part1 and CheckSum Part3. To avoid multiple computing CheckSum Part3.
Save an in-complete CheckSum32 from CheckSum Part1 for common parts.
When we are going to calculate CheckSum32, just should use the corresponding part
of the ProcessorSignature, ProcessorFlag and CheckSum with in-complete CheckSum32.
Notes: CheckSum32 is not a strong verification.
It does not guarantee that the data has not been modified.
CPU has its own mechanism to verify Microcode Binary part.
@param[in] CpuMpData The pointer to CPU MP Data structure.
@param[in] ProcessorNumber The handle number of the processor. The range is
from 0 to the total number of logical processors
minus 1.
**/
VOID
MicrocodeDetect (
IN CPU_MP_DATA *CpuMpData,
IN UINTN ProcessorNumber
)
{
UINT32 ExtendedTableLength;
UINT32 ExtendedTableCount;
CPU_MICROCODE_EXTENDED_TABLE *ExtendedTable;
CPU_MICROCODE_EXTENDED_TABLE_HEADER *ExtendedTableHeader;
CPU_MICROCODE_HEADER *MicrocodeEntryPoint;
UINTN MicrocodeEnd;
UINTN Index;
UINT8 PlatformId;
CPUID_VERSION_INFO_EAX Eax;
CPU_AP_DATA *CpuData;
UINT32 CurrentRevision;
UINT32 LatestRevision;
UINTN TotalSize;
UINT32 CheckSum32;
UINT32 InCompleteCheckSum32;
BOOLEAN CorrectMicrocode;
VOID *MicrocodeData;
MSR_IA32_PLATFORM_ID_REGISTER PlatformIdMsr;
UINT32 ThreadId;
BOOLEAN IsBspCallIn;
if (CpuMpData->MicrocodePatchRegionSize == 0) {
//
// There is no microcode patches
//
return;
}
CurrentRevision = GetCurrentMicrocodeSignature ();
IsBspCallIn = (ProcessorNumber == (UINTN)CpuMpData->BspNumber) ? TRUE : FALSE;
GetProcessorLocationByApicId (GetInitialApicId (), NULL, NULL, &ThreadId);
if (ThreadId != 0) {
//
// Skip loading microcode if it is not the first thread in one core.
//
return;
}
ExtendedTableLength = 0;
//
// Here data of CPUID leafs have not been collected into context buffer, so
// GetProcessorCpuid() cannot be used here to retrieve CPUID data.
//
AsmCpuid (CPUID_VERSION_INFO, &Eax.Uint32, NULL, NULL, NULL);
//
// The index of platform information resides in bits 50:52 of MSR IA32_PLATFORM_ID
//
PlatformIdMsr.Uint64 = AsmReadMsr64 (MSR_IA32_PLATFORM_ID);
PlatformId = (UINT8) PlatformIdMsr.Bits.PlatformId;
//
// Check whether AP has same processor with BSP.
// If yes, direct use microcode info saved by BSP.
//
if (!IsBspCallIn) {
//
// Get the CPU data for BSP
//
CpuData = &(CpuMpData->CpuData[CpuMpData->BspNumber]);
if ((CpuData->ProcessorSignature == Eax.Uint32) &&
(CpuData->PlatformId == PlatformId) &&
(CpuData->MicrocodeEntryAddr != 0)) {
MicrocodeEntryPoint = (CPU_MICROCODE_HEADER *)(UINTN) CpuData->MicrocodeEntryAddr;
MicrocodeData = (VOID *) (MicrocodeEntryPoint + 1);
LatestRevision = MicrocodeEntryPoint->UpdateRevision;
goto Done;
}
}
LatestRevision = 0;
MicrocodeData = NULL;
MicrocodeEnd = (UINTN) (CpuMpData->MicrocodePatchAddress + CpuMpData->MicrocodePatchRegionSize);
MicrocodeEntryPoint = (CPU_MICROCODE_HEADER *) (UINTN) CpuMpData->MicrocodePatchAddress;
do {
//
// Check if the microcode is for the Cpu and the version is newer
// and the update can be processed on the platform
//
CorrectMicrocode = FALSE;
if (MicrocodeEntryPoint->DataSize == 0) {
TotalSize = sizeof (CPU_MICROCODE_HEADER) + 2000;
} else {
TotalSize = sizeof (CPU_MICROCODE_HEADER) + MicrocodeEntryPoint->DataSize;
}
///
/// 0x0 MicrocodeBegin MicrocodeEntry MicrocodeEnd 0xffffffff
/// |--------------|---------------|---------------|---------------|
/// valid TotalSize
/// TotalSize is only valid between 0 and (MicrocodeEnd - MicrocodeEntry).
/// And it should be aligned with 4 bytes.
/// If the TotalSize is invalid, skip 1KB to check next entry.
///
if ( (UINTN)MicrocodeEntryPoint > (MAX_ADDRESS - TotalSize) ||
((UINTN)MicrocodeEntryPoint + TotalSize) > MicrocodeEnd ||
(TotalSize & 0x3) != 0
) {
MicrocodeEntryPoint = (CPU_MICROCODE_HEADER *) (((UINTN) MicrocodeEntryPoint) + SIZE_1KB);
continue;
}
//
// Save an in-complete CheckSum32 from CheckSum Part1 for common parts.
//
InCompleteCheckSum32 = CalculateSum32 (
(UINT32 *) MicrocodeEntryPoint,
TotalSize
);
InCompleteCheckSum32 -= MicrocodeEntryPoint->ProcessorSignature.Uint32;
InCompleteCheckSum32 -= MicrocodeEntryPoint->ProcessorFlags;
InCompleteCheckSum32 -= MicrocodeEntryPoint->Checksum;
if (MicrocodeEntryPoint->HeaderVersion == 0x1) {
//
// It is the microcode header. It is not the padding data between microcode patches
// because the padding data should not include 0x00000001 and it should be the repeated
// byte format (like 0xXYXYXYXY....).
//
if (MicrocodeEntryPoint->ProcessorSignature.Uint32 == Eax.Uint32 &&
MicrocodeEntryPoint->UpdateRevision > LatestRevision &&
(MicrocodeEntryPoint->ProcessorFlags & (1 << PlatformId))
) {
//
// Calculate CheckSum Part1.
//
CheckSum32 = InCompleteCheckSum32;
CheckSum32 += MicrocodeEntryPoint->ProcessorSignature.Uint32;
CheckSum32 += MicrocodeEntryPoint->ProcessorFlags;
CheckSum32 += MicrocodeEntryPoint->Checksum;
if (CheckSum32 == 0) {
CorrectMicrocode = TRUE;
}
} else if ((MicrocodeEntryPoint->DataSize != 0) &&
(MicrocodeEntryPoint->UpdateRevision > LatestRevision)) {
ExtendedTableLength = MicrocodeEntryPoint->TotalSize - (MicrocodeEntryPoint->DataSize +
sizeof (CPU_MICROCODE_HEADER));
if (ExtendedTableLength != 0) {
//
// Extended Table exist, check if the CPU in support list
//
ExtendedTableHeader = (CPU_MICROCODE_EXTENDED_TABLE_HEADER *) ((UINT8 *) (MicrocodeEntryPoint)
+ MicrocodeEntryPoint->DataSize + sizeof (CPU_MICROCODE_HEADER));
//
// Calculate Extended Checksum
//
if ((ExtendedTableLength % 4) == 0) {
//
// Calculate CheckSum Part2.
//
CheckSum32 = CalculateSum32 ((UINT32 *) ExtendedTableHeader, ExtendedTableLength);
if (CheckSum32 == 0) {
//
// Checksum correct
//
ExtendedTableCount = ExtendedTableHeader->ExtendedSignatureCount;
ExtendedTable = (CPU_MICROCODE_EXTENDED_TABLE *) (ExtendedTableHeader + 1);
for (Index = 0; Index < ExtendedTableCount; Index ++) {
//
// Calculate CheckSum Part3.
//
CheckSum32 = InCompleteCheckSum32;
CheckSum32 += ExtendedTable->ProcessorSignature.Uint32;
CheckSum32 += ExtendedTable->ProcessorFlag;
CheckSum32 += ExtendedTable->Checksum;
if (CheckSum32 == 0) {
//
// Verify Header
//
if ((ExtendedTable->ProcessorSignature.Uint32 == Eax.Uint32) &&
(ExtendedTable->ProcessorFlag & (1 << PlatformId)) ) {
//
// Find one
//
CorrectMicrocode = TRUE;
break;
}
}
ExtendedTable ++;
}
}
}
}
}
} else {
//
// It is the padding data between the microcode patches for microcode patches alignment.
// Because the microcode patch is the multiple of 1-KByte, the padding data should not
// exist if the microcode patch alignment value is not larger than 1-KByte. So, the microcode
// alignment value should be larger than 1-KByte. We could skip SIZE_1KB padding data to
// find the next possible microcode patch header.
//
MicrocodeEntryPoint = (CPU_MICROCODE_HEADER *) (((UINTN) MicrocodeEntryPoint) + SIZE_1KB);
continue;
}
//
// Get the next patch.
//
if (MicrocodeEntryPoint->DataSize == 0) {
TotalSize = 2048;
} else {
TotalSize = MicrocodeEntryPoint->TotalSize;
}
if (CorrectMicrocode) {
LatestRevision = MicrocodeEntryPoint->UpdateRevision;
MicrocodeData = (VOID *) ((UINTN) MicrocodeEntryPoint + sizeof (CPU_MICROCODE_HEADER));
}
MicrocodeEntryPoint = (CPU_MICROCODE_HEADER *) (((UINTN) MicrocodeEntryPoint) + TotalSize);
} while (((UINTN) MicrocodeEntryPoint < MicrocodeEnd));
Done:
if (LatestRevision != 0) {
//
// Save the detected microcode patch entry address (including the
// microcode patch header) for each processor.
// It will be used when building the microcode patch cache HOB.
//
CpuMpData->CpuData[ProcessorNumber].MicrocodeEntryAddr =
(UINTN) MicrocodeData - sizeof (CPU_MICROCODE_HEADER);
}
if (LatestRevision > CurrentRevision) {
//
// BIOS only authenticate updates that contain a numerically larger revision
// than the currently loaded revision, where Current Signature < New Update
// Revision. A processor with no loaded update is considered to have a
// revision equal to zero.
//
ASSERT (MicrocodeData != NULL);
AsmWriteMsr64 (
MSR_IA32_BIOS_UPDT_TRIG,
(UINT64) (UINTN) MicrocodeData
);
//
// Get and check new microcode signature
//
CurrentRevision = GetCurrentMicrocodeSignature ();
if (CurrentRevision != LatestRevision) {
AcquireSpinLock(&CpuMpData->MpLock);
DEBUG ((EFI_D_ERROR, "Updated microcode signature [0x%08x] does not match \
loaded microcode signature [0x%08x]\n", CurrentRevision, LatestRevision));
ReleaseSpinLock(&CpuMpData->MpLock);
}
}
}
/**
Determine if a microcode patch matchs the specific processor signature and flag.
@param[in] CpuMpData The pointer to CPU MP Data structure.
@param[in] ProcessorSignature The processor signature field value
supported by a microcode patch.
@param[in] ProcessorFlags The prcessor flags field value supported by
a microcode patch.
@retval TRUE The specified microcode patch will be loaded.
@retval FALSE The specified microcode patch will not be loaded.
**/
BOOLEAN
IsProcessorMatchedMicrocodePatch (
IN CPU_MP_DATA *CpuMpData,
IN UINT32 ProcessorSignature,
IN UINT32 ProcessorFlags
)
{
UINTN Index;
CPU_AP_DATA *CpuData;
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
CpuData = &CpuMpData->CpuData[Index];
if ((ProcessorSignature == CpuData->ProcessorSignature) &&
(ProcessorFlags & (1 << CpuData->PlatformId)) != 0) {
return TRUE;
}
}
return FALSE;
}
/**
Check the 'ProcessorSignature' and 'ProcessorFlags' of the microcode
patch header with the CPUID and PlatformID of the processors within
system to decide if it will be copied into memory.
@param[in] CpuMpData The pointer to CPU MP Data structure.
@param[in] MicrocodeEntryPoint The pointer to the microcode patch header.
@retval TRUE The specified microcode patch need to be loaded.
@retval FALSE The specified microcode patch dosen't need to be loaded.
**/
BOOLEAN
IsMicrocodePatchNeedLoad (
IN CPU_MP_DATA *CpuMpData,
CPU_MICROCODE_HEADER *MicrocodeEntryPoint
)
{
BOOLEAN NeedLoad;
UINTN DataSize;
UINTN TotalSize;
CPU_MICROCODE_EXTENDED_TABLE_HEADER *ExtendedTableHeader;
UINT32 ExtendedTableCount;
CPU_MICROCODE_EXTENDED_TABLE *ExtendedTable;
UINTN Index;
//
// Check the 'ProcessorSignature' and 'ProcessorFlags' in microcode patch header.
//
NeedLoad = IsProcessorMatchedMicrocodePatch (
CpuMpData,
MicrocodeEntryPoint->ProcessorSignature.Uint32,
MicrocodeEntryPoint->ProcessorFlags
);
//
// If the Extended Signature Table exists, check if the processor is in the
// support list
//
DataSize = MicrocodeEntryPoint->DataSize;
TotalSize = (DataSize == 0) ? 2048 : MicrocodeEntryPoint->TotalSize;
if ((!NeedLoad) && (DataSize != 0) &&
(TotalSize - DataSize > sizeof (CPU_MICROCODE_HEADER) +
sizeof (CPU_MICROCODE_EXTENDED_TABLE_HEADER))) {
ExtendedTableHeader = (CPU_MICROCODE_EXTENDED_TABLE_HEADER *) ((UINT8 *) (MicrocodeEntryPoint)
+ DataSize + sizeof (CPU_MICROCODE_HEADER));
ExtendedTableCount = ExtendedTableHeader->ExtendedSignatureCount;
ExtendedTable = (CPU_MICROCODE_EXTENDED_TABLE *) (ExtendedTableHeader + 1);
for (Index = 0; Index < ExtendedTableCount; Index ++) {
//
// Check the 'ProcessorSignature' and 'ProcessorFlag' of the Extended
// Signature Table entry with the CPUID and PlatformID of the processors
// within system to decide if it will be copied into memory
//
NeedLoad = IsProcessorMatchedMicrocodePatch (
CpuMpData,
ExtendedTable->ProcessorSignature.Uint32,
ExtendedTable->ProcessorFlag
);
if (NeedLoad) {
break;
}
ExtendedTable ++;
}
}
return NeedLoad;
}
/**
Actual worker function that shadows the required microcode patches into memory.
@param[in, out] CpuMpData The pointer to CPU MP Data structure.
@param[in] Patches The pointer to an array of information on
the microcode patches that will be loaded
into memory.
@param[in] PatchCount The number of microcode patches that will
be loaded into memory.
@param[in] TotalLoadSize The total size of all the microcode patches
to be loaded.
**/
VOID
ShadowMicrocodePatchWorker (
IN OUT CPU_MP_DATA *CpuMpData,
IN MICROCODE_PATCH_INFO *Patches,
IN UINTN PatchCount,
IN UINTN TotalLoadSize
)
{
UINTN Index;
VOID *MicrocodePatchInRam;
UINT8 *Walker;
ASSERT ((Patches != NULL) && (PatchCount != 0));
MicrocodePatchInRam = AllocatePages (EFI_SIZE_TO_PAGES (TotalLoadSize));
if (MicrocodePatchInRam == NULL) {
return;
}
//
// Load all the required microcode patches into memory
//
for (Walker = MicrocodePatchInRam, Index = 0; Index < PatchCount; Index++) {
CopyMem (
Walker,
(VOID *) Patches[Index].Address,
Patches[Index].Size
);
Walker += Patches[Index].Size;
}
//
// Update the microcode patch related fields in CpuMpData
//
CpuMpData->MicrocodePatchAddress = (UINTN) MicrocodePatchInRam;
CpuMpData->MicrocodePatchRegionSize = TotalLoadSize;
DEBUG ((
DEBUG_INFO,
"%a: Required microcode patches have been loaded at 0x%lx, with size 0x%lx.\n",
__FUNCTION__, CpuMpData->MicrocodePatchAddress, CpuMpData->MicrocodePatchRegionSize
));
return;
}
/**
Shadow the required microcode patches data into memory according to PCD
PcdCpuMicrocodePatchAddress and PcdCpuMicrocodePatchRegionSize.
@param[in, out] CpuMpData The pointer to CPU MP Data structure.
**/
VOID
ShadowMicrocodePatchByPcd (
IN OUT CPU_MP_DATA *CpuMpData
)
{
CPU_MICROCODE_HEADER *MicrocodeEntryPoint;
UINTN MicrocodeEnd;
UINTN DataSize;
UINTN TotalSize;
MICROCODE_PATCH_INFO *PatchInfoBuffer;
UINTN MaxPatchNumber;
UINTN PatchCount;
UINTN TotalLoadSize;
//
// Initialize the microcode patch related fields in CpuMpData as the values
// specified by the PCD pair. If the microcode patches are loaded into memory,
// these fields will be updated.
//
CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);
CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);
MicrocodeEntryPoint = (CPU_MICROCODE_HEADER *) (UINTN) CpuMpData->MicrocodePatchAddress;
MicrocodeEnd = (UINTN) MicrocodeEntryPoint +
(UINTN) CpuMpData->MicrocodePatchRegionSize;
if ((MicrocodeEntryPoint == NULL) || ((UINTN) MicrocodeEntryPoint == MicrocodeEnd)) {
//
// There is no microcode patches
//
return;
}
PatchCount = 0;
MaxPatchNumber = DEFAULT_MAX_MICROCODE_PATCH_NUM;
TotalLoadSize = 0;
PatchInfoBuffer = AllocatePool (MaxPatchNumber * sizeof (MICROCODE_PATCH_INFO));
if (PatchInfoBuffer == NULL) {
return;
}
//
// Process the header of each microcode patch within the region.
// The purpose is to decide which microcode patch(es) will be loaded into memory.
//
do {
if (MicrocodeEntryPoint->HeaderVersion != 0x1) {
//
// Padding data between the microcode patches, skip 1KB to check next entry.
//
MicrocodeEntryPoint = (CPU_MICROCODE_HEADER *) (((UINTN) MicrocodeEntryPoint) + SIZE_1KB);
continue;
}
DataSize = MicrocodeEntryPoint->DataSize;
TotalSize = (DataSize == 0) ? 2048 : MicrocodeEntryPoint->TotalSize;
if ( (UINTN)MicrocodeEntryPoint > (MAX_ADDRESS - TotalSize) ||
((UINTN)MicrocodeEntryPoint + TotalSize) > MicrocodeEnd ||
(DataSize & 0x3) != 0 ||
(TotalSize & (SIZE_1KB - 1)) != 0 ||
TotalSize < DataSize
) {
//
// Not a valid microcode header, skip 1KB to check next entry.
//
MicrocodeEntryPoint = (CPU_MICROCODE_HEADER *) (((UINTN) MicrocodeEntryPoint) + SIZE_1KB);
continue;
}
if (IsMicrocodePatchNeedLoad (CpuMpData, MicrocodeEntryPoint)) {
PatchCount++;
if (PatchCount > MaxPatchNumber) {
//
// Current 'PatchInfoBuffer' cannot hold the information, double the size
// and allocate a new buffer.
//
if (MaxPatchNumber > MAX_UINTN / 2 / sizeof (MICROCODE_PATCH_INFO)) {
//
// Overflow check for MaxPatchNumber
//
goto OnExit;
}
PatchInfoBuffer = ReallocatePool (
MaxPatchNumber * sizeof (MICROCODE_PATCH_INFO),
2 * MaxPatchNumber * sizeof (MICROCODE_PATCH_INFO),
PatchInfoBuffer
);
if (PatchInfoBuffer == NULL) {
goto OnExit;
}
MaxPatchNumber = MaxPatchNumber * 2;
}
//
// Store the information of this microcode patch
//
PatchInfoBuffer[PatchCount - 1].Address = (UINTN) MicrocodeEntryPoint;
PatchInfoBuffer[PatchCount - 1].Size = TotalSize;
TotalLoadSize += TotalSize;
}
//
// Process the next microcode patch
//
MicrocodeEntryPoint = (CPU_MICROCODE_HEADER *) (((UINTN) MicrocodeEntryPoint) + TotalSize);
} while (((UINTN) MicrocodeEntryPoint < MicrocodeEnd));
if (PatchCount != 0) {
DEBUG ((
DEBUG_INFO,
"%a: 0x%x microcode patches will be loaded into memory, with size 0x%x.\n",
__FUNCTION__, PatchCount, TotalLoadSize
));
ShadowMicrocodePatchWorker (CpuMpData, PatchInfoBuffer, PatchCount, TotalLoadSize);
}
OnExit:
if (PatchInfoBuffer != NULL) {
FreePool (PatchInfoBuffer);
}
return;
}
/**
Shadow the required microcode patches data into memory.
@param[in, out] CpuMpData The pointer to CPU MP Data structure.
**/
VOID
ShadowMicrocodeUpdatePatch (
IN OUT CPU_MP_DATA *CpuMpData
)
{
EFI_STATUS Status;
Status = PlatformShadowMicrocode (CpuMpData);
if (EFI_ERROR (Status)) {
ShadowMicrocodePatchByPcd (CpuMpData);
}
}
/**
Get the cached microcode patch base address and size from the microcode patch
information cache HOB.
@param[out] Address Base address of the microcode patches data.
It will be updated if the microcode patch
information cache HOB is found.
@param[out] RegionSize Size of the microcode patches data.
It will be updated if the microcode patch
information cache HOB is found.
@retval TRUE The microcode patch information cache HOB is found.
@retval FALSE The microcode patch information cache HOB is not found.
**/
BOOLEAN
GetMicrocodePatchInfoFromHob (
UINT64 *Address,
UINT64 *RegionSize
)
{
EFI_HOB_GUID_TYPE *GuidHob;
EDKII_MICROCODE_PATCH_HOB *MicrocodePathHob;
GuidHob = GetFirstGuidHob (&gEdkiiMicrocodePatchHobGuid);
if (GuidHob == NULL) {
DEBUG((DEBUG_INFO, "%a: Microcode patch cache HOB is not found.\n", __FUNCTION__));
return FALSE;
}
MicrocodePathHob = GET_GUID_HOB_DATA (GuidHob);
*Address = MicrocodePathHob->MicrocodePatchAddress;
*RegionSize = MicrocodePathHob->MicrocodePatchRegionSize;
DEBUG((
DEBUG_INFO, "%a: MicrocodeBase = 0x%lx, MicrocodeSize = 0x%lx\n",
__FUNCTION__, *Address, *RegionSize
));
return TRUE;
}