CloverBootloader/UefiCpuPkg/Library/SmmCpuFeaturesLib/SmmStm.c

1298 lines
36 KiB
C

/** @file
SMM STM support functions
Copyright (c) 2015 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <PiSmm.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/HobLib.h>
#include <Library/DebugLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/SmmServicesTableLib.h>
#include <Library/TpmMeasurementLib.h>
#include <Register/Intel/Cpuid.h>
#include <Register/Intel/ArchitecturalMsr.h>
#include <Register/Intel/SmramSaveStateMap.h>
#include <Protocol/MpService.h>
#include "SmmStm.h"
#define TXT_EVTYPE_BASE 0x400
#define TXT_EVTYPE_STM_HASH (TXT_EVTYPE_BASE + 14)
#define RDWR_ACCS 3
#define FULL_ACCS 7
/**
The constructor function
@param[in] ImageHandle The firmware allocated handle for the EFI image.
@param[in] SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The constructor always returns EFI_SUCCESS.
**/
EFI_STATUS
EFIAPI
SmmCpuFeaturesLibConstructor (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
);
EFI_HANDLE mStmSmmCpuHandle = NULL;
BOOLEAN mLockLoadMonitor = FALSE;
//
// Template of STM_RSC_END structure for copying.
//
GLOBAL_REMOVE_IF_UNREFERENCED STM_RSC_END mRscEndNode = {
{END_OF_RESOURCES, sizeof (STM_RSC_END)},
};
GLOBAL_REMOVE_IF_UNREFERENCED UINT8 *mStmResourcesPtr = NULL;
GLOBAL_REMOVE_IF_UNREFERENCED UINTN mStmResourceTotalSize = 0x0;
GLOBAL_REMOVE_IF_UNREFERENCED UINTN mStmResourceSizeUsed = 0x0;
GLOBAL_REMOVE_IF_UNREFERENCED UINTN mStmResourceSizeAvailable = 0x0;
GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mStmState = 0;
//
// System Configuration Table pointing to STM Configuration Table
//
GLOBAL_REMOVE_IF_UNREFERENCED
EFI_SM_MONITOR_INIT_PROTOCOL mSmMonitorInitProtocol = {
LoadMonitor,
AddPiResource,
DeletePiResource,
GetPiResource,
GetMonitorState,
};
#define CPUID1_EDX_XD_SUPPORT 0x100000
//
// External global variables associated with SMI Handler Template
//
extern CONST TXT_PROCESSOR_SMM_DESCRIPTOR gcStmPsd;
extern UINT32 gStmSmbase;
extern volatile UINT32 gStmSmiStack;
extern UINT32 gStmSmiCr3;
extern volatile UINT8 gcStmSmiHandlerTemplate[];
extern CONST UINT16 gcStmSmiHandlerSize;
extern UINT16 gcStmSmiHandlerOffset;
extern BOOLEAN gStmXdSupported;
//
// Variables used by SMI Handler
//
IA32_DESCRIPTOR gStmSmiHandlerIdtr;
//
// MP Services Protocol
//
EFI_MP_SERVICES_PROTOCOL *mSmmCpuFeaturesLibMpService = NULL;
//
// MSEG Base and Length in SMRAM
//
UINTN mMsegBase = 0;
UINTN mMsegSize = 0;
BOOLEAN mStmConfigurationTableInitialized = FALSE;
/**
The constructor function
@param[in] ImageHandle The firmware allocated handle for the EFI image.
@param[in] SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The constructor always returns EFI_SUCCESS.
**/
EFI_STATUS
EFIAPI
SmmCpuFeaturesLibStmConstructor (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
CPUID_VERSION_INFO_ECX RegEcx;
EFI_HOB_GUID_TYPE *GuidHob;
EFI_SMRAM_DESCRIPTOR *SmramDescriptor;
//
// Initialize address fixup
//
SmmCpuFeaturesLibStmSmiEntryFixupAddress ();
//
// Call the common constructor function
//
Status = SmmCpuFeaturesLibConstructor (ImageHandle, SystemTable);
ASSERT_EFI_ERROR (Status);
//
// Lookup the MP Services Protocol
//
Status = gBS->LocateProtocol (
&gEfiMpServiceProtocolGuid,
NULL,
(VOID **)&mSmmCpuFeaturesLibMpService
);
ASSERT_EFI_ERROR (Status);
//
// If CPU supports VMX, then determine SMRAM range for MSEG.
//
AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &RegEcx.Uint32, NULL);
if (RegEcx.Bits.VMX == 1) {
GuidHob = GetFirstGuidHob (&gMsegSmramGuid);
if (GuidHob != NULL) {
//
// Retrieve MSEG location from MSEG SRAM HOB
//
SmramDescriptor = (EFI_SMRAM_DESCRIPTOR *) GET_GUID_HOB_DATA (GuidHob);
if (SmramDescriptor->PhysicalSize > 0) {
mMsegBase = (UINTN)SmramDescriptor->CpuStart;
mMsegSize = (UINTN)SmramDescriptor->PhysicalSize;
}
} else if (PcdGet32 (PcdCpuMsegSize) > 0) {
//
// Allocate MSEG from SMRAM memory
//
mMsegBase = (UINTN)AllocatePages (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuMsegSize)));
if (mMsegBase > 0) {
mMsegSize = ALIGN_VALUE (PcdGet32 (PcdCpuMsegSize), EFI_PAGE_SIZE);
} else {
DEBUG ((DEBUG_ERROR, "Not enough SMRAM resource to allocate MSEG size %08x\n", PcdGet32 (PcdCpuMsegSize)));
}
}
if (mMsegBase > 0) {
DEBUG ((DEBUG_INFO, "MsegBase: 0x%08x, MsegSize: 0x%08x\n", mMsegBase, mMsegSize));
}
}
return EFI_SUCCESS;
}
/**
Internal worker function that is called to complete CPU initialization at the
end of SmmCpuFeaturesInitializeProcessor().
**/
VOID
FinishSmmCpuFeaturesInitializeProcessor (
VOID
)
{
MSR_IA32_SMM_MONITOR_CTL_REGISTER SmmMonitorCtl;
//
// Set MSEG Base Address in SMM Monitor Control MSR.
//
if (mMsegBase > 0) {
SmmMonitorCtl.Uint64 = 0;
SmmMonitorCtl.Bits.MsegBase = (UINT32)mMsegBase >> 12;
SmmMonitorCtl.Bits.Valid = 1;
AsmWriteMsr64 (MSR_IA32_SMM_MONITOR_CTL, SmmMonitorCtl.Uint64);
}
}
/**
Return the size, in bytes, of a custom SMI Handler in bytes. If 0 is
returned, then a custom SMI handler is not provided by this library,
and the default SMI handler must be used.
@retval 0 Use the default SMI handler.
@retval > 0 Use the SMI handler installed by SmmCpuFeaturesInstallSmiHandler()
The caller is required to allocate enough SMRAM for each CPU to
support the size of the custom SMI handler.
**/
UINTN
EFIAPI
SmmCpuFeaturesGetSmiHandlerSize (
VOID
)
{
return gcStmSmiHandlerSize;
}
/**
Install a custom SMI handler for the CPU specified by CpuIndex. This function
is only called if SmmCpuFeaturesGetSmiHandlerSize() returns a size is greater
than zero and is called by the CPU that was elected as monarch during System
Management Mode initialization.
@param[in] CpuIndex The index of the CPU to install the custom SMI handler.
The value must be between 0 and the NumberOfCpus field
in the System Management System Table (SMST).
@param[in] SmBase The SMBASE address for the CPU specified by CpuIndex.
@param[in] SmiStack The stack to use when an SMI is processed by the
the CPU specified by CpuIndex.
@param[in] StackSize The size, in bytes, if the stack used when an SMI is
processed by the CPU specified by CpuIndex.
@param[in] GdtBase The base address of the GDT to use when an SMI is
processed by the CPU specified by CpuIndex.
@param[in] GdtSize The size, in bytes, of the GDT used when an SMI is
processed by the CPU specified by CpuIndex.
@param[in] IdtBase The base address of the IDT to use when an SMI is
processed by the CPU specified by CpuIndex.
@param[in] IdtSize The size, in bytes, of the IDT used when an SMI is
processed by the CPU specified by CpuIndex.
@param[in] Cr3 The base address of the page tables to use when an SMI
is processed by the CPU specified by CpuIndex.
**/
VOID
EFIAPI
SmmCpuFeaturesInstallSmiHandler (
IN UINTN CpuIndex,
IN UINT32 SmBase,
IN VOID *SmiStack,
IN UINTN StackSize,
IN UINTN GdtBase,
IN UINTN GdtSize,
IN UINTN IdtBase,
IN UINTN IdtSize,
IN UINT32 Cr3
)
{
EFI_STATUS Status;
TXT_PROCESSOR_SMM_DESCRIPTOR *Psd;
VOID *Hob;
UINT32 RegEax;
UINT32 RegEdx;
EFI_PROCESSOR_INFORMATION ProcessorInfo;
CopyMem ((VOID *)((UINTN)SmBase + TXT_SMM_PSD_OFFSET), &gcStmPsd, sizeof (gcStmPsd));
Psd = (TXT_PROCESSOR_SMM_DESCRIPTOR *)(VOID *)((UINTN)SmBase + TXT_SMM_PSD_OFFSET);
Psd->SmmGdtPtr = GdtBase;
Psd->SmmGdtSize = (UINT32)GdtSize;
//
// Initialize values in template before copy
//
gStmSmiStack = (UINT32)((UINTN)SmiStack + StackSize - sizeof (UINTN));
gStmSmiCr3 = Cr3;
gStmSmbase = SmBase;
gStmSmiHandlerIdtr.Base = IdtBase;
gStmSmiHandlerIdtr.Limit = (UINT16)(IdtSize - 1);
if (gStmXdSupported) {
AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);
if (RegEax <= CPUID_EXTENDED_FUNCTION) {
//
// Extended CPUID functions are not supported on this processor.
//
gStmXdSupported = FALSE;
}
AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx);
if ((RegEdx & CPUID1_EDX_XD_SUPPORT) == 0) {
//
// Execute Disable Bit feature is not supported on this processor.
//
gStmXdSupported = FALSE;
}
}
//
// Set the value at the top of the CPU stack to the CPU Index
//
*(UINTN*)(UINTN)gStmSmiStack = CpuIndex;
//
// Copy template to CPU specific SMI handler location
//
CopyMem (
(VOID*)((UINTN)SmBase + SMM_HANDLER_OFFSET),
(VOID*)gcStmSmiHandlerTemplate,
gcStmSmiHandlerSize
);
Psd->SmmSmiHandlerRip = SmBase + SMM_HANDLER_OFFSET + gcStmSmiHandlerOffset;
Psd->SmmSmiHandlerRsp = (UINTN)SmiStack + StackSize - sizeof(UINTN);
Psd->SmmCr3 = Cr3;
DEBUG((DEBUG_INFO, "CpuSmmStmExceptionStackSize - %x\n", PcdGet32(PcdCpuSmmStmExceptionStackSize)));
DEBUG((DEBUG_INFO, "Pages - %x\n", EFI_SIZE_TO_PAGES(PcdGet32(PcdCpuSmmStmExceptionStackSize))));
Psd->StmProtectionExceptionHandler.SpeRsp = (UINT64)(UINTN)AllocatePages (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStmExceptionStackSize)));
Psd->StmProtectionExceptionHandler.SpeRsp += EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStmExceptionStackSize)));
Psd->BiosHwResourceRequirementsPtr = (UINT64)(UINTN)GetStmResource ();
//
// Get the APIC ID for the CPU specified by CpuIndex
//
Status = mSmmCpuFeaturesLibMpService->GetProcessorInfo (
mSmmCpuFeaturesLibMpService,
CpuIndex,
&ProcessorInfo
);
ASSERT_EFI_ERROR (Status);
Psd->LocalApicId = (UINT32)ProcessorInfo.ProcessorId;
Psd->AcpiRsdp = 0;
Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
if (Hob != NULL) {
Psd->PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
} else {
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000008) {
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
Psd->PhysicalAddressBits = (UINT8) RegEax;
} else {
Psd->PhysicalAddressBits = 36;
}
}
if (!mStmConfigurationTableInitialized) {
StmSmmConfigurationTableInit ();
mStmConfigurationTableInitialized = TRUE;
}
}
/**
SMM End Of Dxe event notification handler.
STM support need patch AcpiRsdp in TXT_PROCESSOR_SMM_DESCRIPTOR.
@param[in] Protocol Points to the protocol's unique identifier.
@param[in] Interface Points to the interface instance.
@param[in] Handle The handle on which the interface was installed.
@retval EFI_SUCCESS Notification handler runs successfully.
**/
EFI_STATUS
EFIAPI
SmmEndOfDxeEventNotify (
IN CONST EFI_GUID *Protocol,
IN VOID *Interface,
IN EFI_HANDLE Handle
)
{
VOID *Rsdp;
UINTN Index;
TXT_PROCESSOR_SMM_DESCRIPTOR *Psd;
DEBUG ((DEBUG_INFO, "SmmEndOfDxeEventNotify\n"));
//
// found ACPI table RSD_PTR from system table
//
Rsdp = NULL;
for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
if (CompareGuid (&(gST->ConfigurationTable[Index].VendorGuid), &gEfiAcpi20TableGuid)) {
//
// A match was found.
//
Rsdp = gST->ConfigurationTable[Index].VendorTable;
break;
}
}
if (Rsdp == NULL) {
for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
if (CompareGuid (&(gST->ConfigurationTable[Index].VendorGuid), &gEfiAcpi10TableGuid)) {
//
// A match was found.
//
Rsdp = gST->ConfigurationTable[Index].VendorTable;
break;
}
}
}
for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {
Psd = (TXT_PROCESSOR_SMM_DESCRIPTOR *)((UINTN)gSmst->CpuSaveState[Index] - SMRAM_SAVE_STATE_MAP_OFFSET + TXT_SMM_PSD_OFFSET);
DEBUG ((DEBUG_INFO, "Index=%d Psd=%p Rsdp=%p\n", Index, Psd, Rsdp));
Psd->AcpiRsdp = (UINT64)(UINTN)Rsdp;
}
mLockLoadMonitor = TRUE;
return EFI_SUCCESS;
}
/**
This function initializes the STM configuration table.
**/
VOID
StmSmmConfigurationTableInit (
VOID
)
{
EFI_STATUS Status;
VOID *Registration;
Status = gSmst->SmmInstallProtocolInterface (
&mStmSmmCpuHandle,
&gEfiSmMonitorInitProtocolGuid,
EFI_NATIVE_INTERFACE,
&mSmMonitorInitProtocol
);
ASSERT_EFI_ERROR (Status);
//
//
// Register SMM End of DXE Event
//
Status = gSmst->SmmRegisterProtocolNotify (
&gEfiSmmEndOfDxeProtocolGuid,
SmmEndOfDxeEventNotify,
&Registration
);
ASSERT_EFI_ERROR (Status);
}
/**
Get STM state.
@return STM state
**/
EFI_SM_MONITOR_STATE
EFIAPI
GetMonitorState (
VOID
)
{
return mStmState;
}
/**
Handle single Resource to see if it can be merged into Record.
@param Resource A pointer to resource node to be added
@param Record A pointer to record node to be merged
@retval TRUE resource handled
@retval FALSE resource is not handled
**/
BOOLEAN
HandleSingleResource (
IN STM_RSC *Resource,
IN STM_RSC *Record
)
{
UINT64 ResourceLo;
UINT64 ResourceHi;
UINT64 RecordLo;
UINT64 RecordHi;
ResourceLo = 0;
ResourceHi = 0;
RecordLo = 0;
RecordHi = 0;
//
// Calling code is responsible for making sure that
// Resource->Header.RscType == (*Record)->Header.RscType
// thus we use just one of them as switch variable.
//
switch (Resource->Header.RscType) {
case MEM_RANGE:
case MMIO_RANGE:
ResourceLo = Resource->Mem.Base;
ResourceHi = Resource->Mem.Base + Resource->Mem.Length;
RecordLo = Record->Mem.Base;
RecordHi = Record->Mem.Base + Record->Mem.Length;
if (Resource->Mem.RWXAttributes != Record->Mem.RWXAttributes) {
if ((ResourceLo == RecordLo) && (ResourceHi == RecordHi)) {
Record->Mem.RWXAttributes = Resource->Mem.RWXAttributes | Record->Mem.RWXAttributes;
return TRUE;
} else {
return FALSE;
}
}
break;
case IO_RANGE:
case TRAPPED_IO_RANGE:
ResourceLo = (UINT64) Resource->Io.Base;
ResourceHi = (UINT64) Resource->Io.Base + (UINT64) Resource->Io.Length;
RecordLo = (UINT64) Record->Io.Base;
RecordHi = (UINT64) Record->Io.Base + (UINT64) Record->Io.Length;
break;
case PCI_CFG_RANGE:
if ((Resource->PciCfg.OriginatingBusNumber != Record->PciCfg.OriginatingBusNumber) ||
(Resource->PciCfg.LastNodeIndex != Record->PciCfg.LastNodeIndex)) {
return FALSE;
}
if (CompareMem (Resource->PciCfg.PciDevicePath, Record->PciCfg.PciDevicePath, sizeof(STM_PCI_DEVICE_PATH_NODE) * (Resource->PciCfg.LastNodeIndex + 1)) != 0) {
return FALSE;
}
ResourceLo = (UINT64) Resource->PciCfg.Base;
ResourceHi = (UINT64) Resource->PciCfg.Base + (UINT64) Resource->PciCfg.Length;
RecordLo = (UINT64) Record->PciCfg.Base;
RecordHi = (UINT64) Record->PciCfg.Base + (UINT64) Record->PciCfg.Length;
if (Resource->PciCfg.RWAttributes != Record->PciCfg.RWAttributes) {
if ((ResourceLo == RecordLo) && (ResourceHi == RecordHi)) {
Record->PciCfg.RWAttributes = Resource->PciCfg.RWAttributes | Record->PciCfg.RWAttributes;
return TRUE;
} else {
return FALSE;
}
}
break;
case MACHINE_SPECIFIC_REG:
//
// Special case - merge MSR masks in place.
//
if (Resource->Msr.MsrIndex != Record->Msr.MsrIndex) {
return FALSE;
}
Record->Msr.ReadMask |= Resource->Msr.ReadMask;
Record->Msr.WriteMask |= Resource->Msr.WriteMask;
return TRUE;
default:
return FALSE;
}
//
// If resources are disjoint
//
if ((ResourceHi < RecordLo) || (ResourceLo > RecordHi)) {
return FALSE;
}
//
// If resource is consumed by record.
//
if ((ResourceLo >= RecordLo) && (ResourceHi <= RecordHi)) {
return TRUE;
}
//
// Resources are overlapping.
// Resource and record are merged.
//
ResourceLo = (ResourceLo < RecordLo) ? ResourceLo : RecordLo;
ResourceHi = (ResourceHi > RecordHi) ? ResourceHi : RecordHi;
switch (Resource->Header.RscType) {
case MEM_RANGE:
case MMIO_RANGE:
Record->Mem.Base = ResourceLo;
Record->Mem.Length = ResourceHi - ResourceLo;
break;
case IO_RANGE:
case TRAPPED_IO_RANGE:
Record->Io.Base = (UINT16) ResourceLo;
Record->Io.Length = (UINT16) (ResourceHi - ResourceLo);
break;
case PCI_CFG_RANGE:
Record->PciCfg.Base = (UINT16) ResourceLo;
Record->PciCfg.Length = (UINT16) (ResourceHi - ResourceLo);
break;
default:
return FALSE;
}
return TRUE;
}
/**
Add resource node.
@param Resource A pointer to resource node to be added
**/
VOID
AddSingleResource (
IN STM_RSC *Resource
)
{
STM_RSC *Record;
Record = (STM_RSC *)mStmResourcesPtr;
while (TRUE) {
if (Record->Header.RscType == END_OF_RESOURCES) {
break;
}
//
// Go to next record if resource and record types don't match.
//
if (Resource->Header.RscType != Record->Header.RscType) {
Record = (STM_RSC *)((UINTN)Record + Record->Header.Length);
continue;
}
//
// Record is handled inside of procedure - don't adjust.
//
if (HandleSingleResource (Resource, Record)) {
return ;
}
Record = (STM_RSC *)((UINTN)Record + Record->Header.Length);
}
//
// Add resource to the end of area.
//
CopyMem (
mStmResourcesPtr + mStmResourceSizeUsed - sizeof(mRscEndNode),
Resource,
Resource->Header.Length
);
CopyMem (
mStmResourcesPtr + mStmResourceSizeUsed - sizeof(mRscEndNode) + Resource->Header.Length,
&mRscEndNode,
sizeof(mRscEndNode)
);
mStmResourceSizeUsed += Resource->Header.Length;
mStmResourceSizeAvailable = mStmResourceTotalSize - mStmResourceSizeUsed;
return ;
}
/**
Add resource list.
@param ResourceList A pointer to resource list to be added
@param NumEntries Optional number of entries.
If 0, list must be terminated by END_OF_RESOURCES.
**/
VOID
AddResource (
IN STM_RSC *ResourceList,
IN UINT32 NumEntries OPTIONAL
)
{
UINT32 Count;
UINTN Index;
STM_RSC *Resource;
if (NumEntries == 0) {
Count = 0xFFFFFFFF;
} else {
Count = NumEntries;
}
Resource = ResourceList;
for (Index = 0; Index < Count; Index++) {
if (Resource->Header.RscType == END_OF_RESOURCES) {
return ;
}
AddSingleResource (Resource);
Resource = (STM_RSC *)((UINTN)Resource + Resource->Header.Length);
}
return ;
}
/**
Validate resource list.
@param ResourceList A pointer to resource list to be added
@param NumEntries Optional number of entries.
If 0, list must be terminated by END_OF_RESOURCES.
@retval TRUE resource valid
@retval FALSE resource invalid
**/
BOOLEAN
ValidateResource (
IN STM_RSC *ResourceList,
IN UINT32 NumEntries OPTIONAL
)
{
UINT32 Count;
UINTN Index;
STM_RSC *Resource;
UINTN SubIndex;
//
// If NumEntries == 0 make it very big. Scan will be terminated by
// END_OF_RESOURCES.
//
if (NumEntries == 0) {
Count = 0xFFFFFFFF;
} else {
Count = NumEntries;
}
//
// Start from beginning of resource list.
//
Resource = ResourceList;
for (Index = 0; Index < Count; Index++) {
DEBUG ((DEBUG_INFO, "ValidateResource (%d) - RscType(%x)\n", Index, Resource->Header.RscType));
//
// Validate resource.
//
switch (Resource->Header.RscType) {
case END_OF_RESOURCES:
if (Resource->Header.Length != sizeof (STM_RSC_END)) {
return FALSE;
}
//
// If we are passed actual number of resources to add,
// END_OF_RESOURCES structure between them is considered an
// error. If NumEntries == 0 END_OF_RESOURCES is a termination.
//
if (NumEntries != 0) {
return FALSE;
} else {
//
// If NumEntries == 0 and list reached end - return success.
//
return TRUE;
}
break;
case MEM_RANGE:
case MMIO_RANGE:
if (Resource->Header.Length != sizeof (STM_RSC_MEM_DESC)) {
return FALSE;
}
if (Resource->Mem.RWXAttributes > FULL_ACCS) {
return FALSE;
}
break;
case IO_RANGE:
case TRAPPED_IO_RANGE:
if (Resource->Header.Length != sizeof (STM_RSC_IO_DESC)) {
return FALSE;
}
if ((Resource->Io.Base + Resource->Io.Length) > 0xFFFF) {
return FALSE;
}
break;
case PCI_CFG_RANGE:
DEBUG ((DEBUG_INFO, "ValidateResource - PCI (0x%02x, 0x%08x, 0x%02x, 0x%02x)\n", Resource->PciCfg.OriginatingBusNumber, Resource->PciCfg.LastNodeIndex, Resource->PciCfg.PciDevicePath[0].PciDevice, Resource->PciCfg.PciDevicePath[0].PciFunction));
if (Resource->Header.Length != sizeof (STM_RSC_PCI_CFG_DESC) + (sizeof(STM_PCI_DEVICE_PATH_NODE) * Resource->PciCfg.LastNodeIndex)) {
return FALSE;
}
for (SubIndex = 0; SubIndex <= Resource->PciCfg.LastNodeIndex; SubIndex++) {
if ((Resource->PciCfg.PciDevicePath[SubIndex].PciDevice > 0x1F) || (Resource->PciCfg.PciDevicePath[SubIndex].PciFunction > 7)) {
return FALSE;
}
}
if ((Resource->PciCfg.Base + Resource->PciCfg.Length) > 0x1000) {
return FALSE;
}
break;
case MACHINE_SPECIFIC_REG:
if (Resource->Header.Length != sizeof (STM_RSC_MSR_DESC)) {
return FALSE;
}
break;
default :
DEBUG ((DEBUG_ERROR, "ValidateResource - Unknown RscType(%x)\n", Resource->Header.RscType));
return FALSE;
}
Resource = (STM_RSC *)((UINTN)Resource + Resource->Header.Length);
}
return TRUE;
}
/**
Get resource list.
EndResource is excluded.
@param ResourceList A pointer to resource list to be added
@param NumEntries Optional number of entries.
If 0, list must be terminated by END_OF_RESOURCES.
@retval TRUE resource valid
@retval FALSE resource invalid
**/
UINTN
GetResourceSize (
IN STM_RSC *ResourceList,
IN UINT32 NumEntries OPTIONAL
)
{
UINT32 Count;
UINTN Index;
STM_RSC *Resource;
Resource = ResourceList;
//
// If NumEntries == 0 make it very big. Scan will be terminated by
// END_OF_RESOURCES.
//
if (NumEntries == 0) {
Count = 0xFFFFFFFF;
} else {
Count = NumEntries;
}
//
// Start from beginning of resource list.
//
Resource = ResourceList;
for (Index = 0; Index < Count; Index++) {
if (Resource->Header.RscType == END_OF_RESOURCES) {
break;
}
Resource = (STM_RSC *)((UINTN)Resource + Resource->Header.Length);
}
return (UINTN)Resource - (UINTN)ResourceList;
}
/**
Add resources in list to database. Allocate new memory areas as needed.
@param ResourceList A pointer to resource list to be added
@param NumEntries Optional number of entries.
If 0, list must be terminated by END_OF_RESOURCES.
@retval EFI_SUCCESS If resources are added
@retval EFI_INVALID_PARAMETER If nested procedure detected resource failer
@retval EFI_OUT_OF_RESOURCES If nested procedure returned it and we cannot allocate more areas.
**/
EFI_STATUS
EFIAPI
AddPiResource (
IN STM_RSC *ResourceList,
IN UINT32 NumEntries OPTIONAL
)
{
EFI_STATUS Status;
UINTN ResourceSize;
EFI_PHYSICAL_ADDRESS NewResource;
UINTN NewResourceSize;
DEBUG ((DEBUG_INFO, "AddPiResource - Enter\n"));
if (!ValidateResource (ResourceList, NumEntries)) {
return EFI_INVALID_PARAMETER;
}
ResourceSize = GetResourceSize (ResourceList, NumEntries);
DEBUG ((DEBUG_INFO, "ResourceSize - 0x%08x\n", ResourceSize));
if (ResourceSize == 0) {
return EFI_INVALID_PARAMETER;
}
if (mStmResourcesPtr == NULL) {
//
// First time allocation
//
NewResourceSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (ResourceSize + sizeof(mRscEndNode)));
DEBUG ((DEBUG_INFO, "Allocate - 0x%08x\n", NewResourceSize));
Status = gSmst->SmmAllocatePages (
AllocateAnyPages,
EfiRuntimeServicesData,
EFI_SIZE_TO_PAGES (NewResourceSize),
&NewResource
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Copy EndResource for initialization
//
mStmResourcesPtr = (UINT8 *)(UINTN)NewResource;
mStmResourceTotalSize = NewResourceSize;
CopyMem (mStmResourcesPtr, &mRscEndNode, sizeof(mRscEndNode));
mStmResourceSizeUsed = sizeof(mRscEndNode);
mStmResourceSizeAvailable = mStmResourceTotalSize - sizeof(mRscEndNode);
//
// Let SmmCore change resource ptr
//
NotifyStmResourceChange (mStmResourcesPtr);
} else if (mStmResourceSizeAvailable < ResourceSize) {
//
// Need enlarge
//
NewResourceSize = mStmResourceTotalSize + (ResourceSize - mStmResourceSizeAvailable);
NewResourceSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (NewResourceSize));
DEBUG ((DEBUG_INFO, "ReAllocate - 0x%08x\n", NewResourceSize));
Status = gSmst->SmmAllocatePages (
AllocateAnyPages,
EfiRuntimeServicesData,
EFI_SIZE_TO_PAGES (NewResourceSize),
&NewResource
);
if (EFI_ERROR (Status)) {
return Status;
}
CopyMem ((VOID *)(UINTN)NewResource, mStmResourcesPtr, mStmResourceSizeUsed);
mStmResourceSizeAvailable = NewResourceSize - mStmResourceSizeUsed;
gSmst->SmmFreePages (
(EFI_PHYSICAL_ADDRESS)(UINTN)mStmResourcesPtr,
EFI_SIZE_TO_PAGES (mStmResourceTotalSize)
);
mStmResourceTotalSize = NewResourceSize;
mStmResourcesPtr = (UINT8 *)(UINTN)NewResource;
//
// Let SmmCore change resource ptr
//
NotifyStmResourceChange (mStmResourcesPtr);
}
//
// Check duplication
//
AddResource (ResourceList, NumEntries);
return EFI_SUCCESS;
}
/**
Delete resources in list to database.
@param ResourceList A pointer to resource list to be deleted
NULL means delete all resources.
@param NumEntries Optional number of entries.
If 0, list must be terminated by END_OF_RESOURCES.
@retval EFI_SUCCESS If resources are deleted
@retval EFI_INVALID_PARAMETER If nested procedure detected resource failer
**/
EFI_STATUS
EFIAPI
DeletePiResource (
IN STM_RSC *ResourceList,
IN UINT32 NumEntries OPTIONAL
)
{
if (ResourceList != NULL) {
// TBD
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
//
// Delete all
//
CopyMem (mStmResourcesPtr, &mRscEndNode, sizeof(mRscEndNode));
mStmResourceSizeUsed = sizeof(mRscEndNode);
mStmResourceSizeAvailable = mStmResourceTotalSize - sizeof(mRscEndNode);
return EFI_SUCCESS;
}
/**
Get BIOS resources.
@param ResourceList A pointer to resource list to be filled
@param ResourceSize On input it means size of resource list input.
On output it means size of resource list filled,
or the size of resource list to be filled if size of too small.
@retval EFI_SUCCESS If resources are returned.
@retval EFI_BUFFER_TOO_SMALL If resource list buffer is too small to hold the whole resources.
**/
EFI_STATUS
EFIAPI
GetPiResource (
OUT STM_RSC *ResourceList,
IN OUT UINT32 *ResourceSize
)
{
if (*ResourceSize < mStmResourceSizeUsed) {
*ResourceSize = (UINT32)mStmResourceSizeUsed;
return EFI_BUFFER_TOO_SMALL;
}
CopyMem (ResourceList, mStmResourcesPtr, mStmResourceSizeUsed);
*ResourceSize = (UINT32)mStmResourceSizeUsed;
return EFI_SUCCESS;
}
/**
Set valid bit for MSEG MSR.
@param Buffer Ap function buffer. (not used)
**/
VOID
EFIAPI
EnableMsegMsr (
IN VOID *Buffer
)
{
MSR_IA32_SMM_MONITOR_CTL_REGISTER SmmMonitorCtl;
SmmMonitorCtl.Uint64 = AsmReadMsr64 (MSR_IA32_SMM_MONITOR_CTL);
SmmMonitorCtl.Bits.Valid = 1;
AsmWriteMsr64 (MSR_IA32_SMM_MONITOR_CTL, SmmMonitorCtl.Uint64);
}
/**
Get 4K page aligned VMCS size.
@return 4K page aligned VMCS size
**/
UINT32
GetVmcsSize (
VOID
)
{
MSR_IA32_VMX_BASIC_REGISTER VmxBasic;
//
// Read VMCS size and and align to 4KB
//
VmxBasic.Uint64 = AsmReadMsr64 (MSR_IA32_VMX_BASIC);
return ALIGN_VALUE (VmxBasic.Bits.VmcsSize, SIZE_4KB);
}
/**
Check STM image size.
@param StmImage STM image
@param StmImageSize STM image size
@retval TRUE check pass
@retval FALSE check fail
**/
BOOLEAN
StmCheckStmImage (
IN EFI_PHYSICAL_ADDRESS StmImage,
IN UINTN StmImageSize
)
{
UINTN MinMsegSize;
STM_HEADER *StmHeader;
IA32_VMX_MISC_REGISTER VmxMiscMsr;
//
// Check to see if STM image is compatible with CPU
//
StmHeader = (STM_HEADER *)(UINTN)StmImage;
VmxMiscMsr.Uint64 = AsmReadMsr64 (MSR_IA32_VMX_MISC);
if (StmHeader->HwStmHdr.MsegHeaderRevision != VmxMiscMsr.Bits.MsegRevisionIdentifier) {
DEBUG ((DEBUG_ERROR, "STM Image not compatible with CPU\n"));
DEBUG ((DEBUG_ERROR, " StmHeader->HwStmHdr.MsegHeaderRevision = %08x\n", StmHeader->HwStmHdr.MsegHeaderRevision));
DEBUG ((DEBUG_ERROR, " VmxMiscMsr.Bits.MsegRevisionIdentifier = %08x\n", VmxMiscMsr.Bits.MsegRevisionIdentifier));
return FALSE;
}
//
// Get Minimal required Mseg size
//
MinMsegSize = (EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (StmHeader->SwStmHdr.StaticImageSize)) +
StmHeader->SwStmHdr.AdditionalDynamicMemorySize +
(StmHeader->SwStmHdr.PerProcDynamicMemorySize + GetVmcsSize () * 2) * gSmst->NumberOfCpus);
if (MinMsegSize < StmImageSize) {
MinMsegSize = StmImageSize;
}
if (StmHeader->HwStmHdr.Cr3Offset >= StmHeader->SwStmHdr.StaticImageSize) {
//
// We will create page table, just in case that SINIT does not create it.
//
if (MinMsegSize < StmHeader->HwStmHdr.Cr3Offset + EFI_PAGES_TO_SIZE(6)) {
MinMsegSize = StmHeader->HwStmHdr.Cr3Offset + EFI_PAGES_TO_SIZE(6);
}
}
//
// Check if it exceeds MSEG size
//
if (MinMsegSize > mMsegSize) {
DEBUG ((DEBUG_ERROR, "MSEG too small. Min MSEG Size = %08x Current MSEG Size = %08x\n", MinMsegSize, mMsegSize));
DEBUG ((DEBUG_ERROR, " StmHeader->SwStmHdr.StaticImageSize = %08x\n", StmHeader->SwStmHdr.StaticImageSize));
DEBUG ((DEBUG_ERROR, " StmHeader->SwStmHdr.AdditionalDynamicMemorySize = %08x\n", StmHeader->SwStmHdr.AdditionalDynamicMemorySize));
DEBUG ((DEBUG_ERROR, " StmHeader->SwStmHdr.PerProcDynamicMemorySize = %08x\n", StmHeader->SwStmHdr.PerProcDynamicMemorySize));
DEBUG ((DEBUG_ERROR, " VMCS Size = %08x\n", GetVmcsSize ()));
DEBUG ((DEBUG_ERROR, " Max CPUs = %08x\n", gSmst->NumberOfCpus));
DEBUG ((DEBUG_ERROR, " StmHeader->HwStmHdr.Cr3Offset = %08x\n", StmHeader->HwStmHdr.Cr3Offset));
return FALSE;
}
return TRUE;
}
/**
Load STM image to MSEG.
@param StmImage STM image
@param StmImageSize STM image size
**/
VOID
StmLoadStmImage (
IN EFI_PHYSICAL_ADDRESS StmImage,
IN UINTN StmImageSize
)
{
MSR_IA32_SMM_MONITOR_CTL_REGISTER SmmMonitorCtl;
UINT32 MsegBase;
STM_HEADER *StmHeader;
//
// Get MSEG base address from MSR_IA32_SMM_MONITOR_CTL
//
SmmMonitorCtl.Uint64 = AsmReadMsr64 (MSR_IA32_SMM_MONITOR_CTL);
MsegBase = SmmMonitorCtl.Bits.MsegBase << 12;
//
// Zero all of MSEG base address
//
ZeroMem ((VOID *)(UINTN)MsegBase, mMsegSize);
//
// Copy STM Image into MSEG
//
CopyMem ((VOID *)(UINTN)MsegBase, (VOID *)(UINTN)StmImage, StmImageSize);
//
// STM Header is at the beginning of the STM Image
//
StmHeader = (STM_HEADER *)(UINTN)StmImage;
StmGen4GPageTable ((UINTN)MsegBase + StmHeader->HwStmHdr.Cr3Offset);
}
/**
Load STM image to MSEG.
@param StmImage STM image
@param StmImageSize STM image size
@retval EFI_SUCCESS Load STM to MSEG successfully
@retval EFI_ALREADY_STARTED STM image is already loaded to MSEG
@retval EFI_BUFFER_TOO_SMALL MSEG is smaller than minimal requirement of STM image
@retval EFI_UNSUPPORTED MSEG is not enabled
**/
EFI_STATUS
EFIAPI
LoadMonitor (
IN EFI_PHYSICAL_ADDRESS StmImage,
IN UINTN StmImageSize
)
{
MSR_IA32_SMM_MONITOR_CTL_REGISTER SmmMonitorCtl;
if (mLockLoadMonitor) {
return EFI_ACCESS_DENIED;
}
SmmMonitorCtl.Uint64 = AsmReadMsr64 (MSR_IA32_SMM_MONITOR_CTL);
if (SmmMonitorCtl.Bits.MsegBase == 0) {
return EFI_UNSUPPORTED;
}
if (!StmCheckStmImage (StmImage, StmImageSize)) {
return EFI_BUFFER_TOO_SMALL;
}
// Record STM_HASH to PCR 0, just in case it is NOT TXT launch, we still need provide the evidence.
TpmMeasureAndLogData(
0, // PcrIndex
TXT_EVTYPE_STM_HASH, // EventType
NULL, // EventLog
0, // LogLen
(VOID *)(UINTN)StmImage, // HashData
StmImageSize // HashDataLen
);
StmLoadStmImage (StmImage, StmImageSize);
mStmState |= EFI_SM_MONITOR_STATE_ENABLED;
return EFI_SUCCESS;
}
/**
This function return BIOS STM resource.
Produced by SmmStm.
Consumed by SmmMpService when Init.
@return BIOS STM resource
**/
VOID *
GetStmResource(
VOID
)
{
return mStmResourcesPtr;
}
/**
This function notify STM resource change.
@param StmResource BIOS STM resource
**/
VOID
NotifyStmResourceChange (
VOID *StmResource
)
{
UINTN Index;
TXT_PROCESSOR_SMM_DESCRIPTOR *Psd;
for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {
Psd = (TXT_PROCESSOR_SMM_DESCRIPTOR *)((UINTN)gSmst->CpuSaveState[Index] - SMRAM_SAVE_STATE_MAP_OFFSET + TXT_SMM_PSD_OFFSET);
Psd->BiosHwResourceRequirementsPtr = (UINT64)(UINTN)StmResource;
}
return ;
}
/**
This is STM setup BIOS callback.
**/
VOID
EFIAPI
SmmStmSetup (
VOID
)
{
mStmState |= EFI_SM_MONITOR_STATE_ACTIVATED;
}
/**
This is STM teardown BIOS callback.
**/
VOID
EFIAPI
SmmStmTeardown (
VOID
)
{
mStmState &= ~EFI_SM_MONITOR_STATE_ACTIVATED;
}